
OpenSHMEM Profiling Using the
TAU Performance System®

OpenSHMEM BOF, SC’11, TCC 303, Nov. 16, 2011, 5:30pm

Sameer Shende

ParaTools, Inc.

http://tau.uoregon.edu/

2	

Introduction: TAU Performance System

•  http://tau.uoregon.edu/

•  Multi-level performance instrumentation
–  Multi-language automatic source instrumentation

•  Flexible and configurable performance measurement

•  Widely-ported parallel performance profiling system
–  Computer system architectures and operating systems
–  Different programming languages and compilers

•  Support for multiple parallel programming paradigms
–  Multi-threading, message passing, mixed-mode, hybrid

•  Integration in complex software, systems, applications

3	

What is TAU?

•  TAU is a performance evaluation tool
•  It supports parallel profiling and tracing

•  Profiling shows you how much (total) time was spent in each routine

•  Tracing shows you when the events take place in each process along a timeline

•  TAU uses a package called PDT for automatic instrumentation of the source code

•  Profiling and tracing can measure time as well as hardware performance counters
from your CPU

•  TAU can automatically instrument your source code (routines, loops, I/O, memory,
phases, etc.)

•  TAU runs on all HPC platforms and it is free (BSD style license)

•  TAU has instrumentation, measurement and analysis tools
–  paraprof is TAU’s 3D profile browser

•  To use TAU’s automatic source instrumentation, you need to set a couple of
environment variables and substitute the name of your compiler with a TAU shell
script

4	

Using TAU with source instrumentation

•  TAU supports several measurement options (profiling, tracing, profiling with
hardware counters, etc.)

•  Each measurement configuration of TAU corresponds to a unique stub makefile
and library that is generated when you configure it

•  To instrument source code using PDT
–  Choose an appropriate TAU stub makefile in <arch>/lib:
% export TAU_MAKEFILE=$TAU/Makefile.tau-shmem-pdt
% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh -help)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C compilers:
% mpicc foo.c
changes to
% tau_cc.sh foo.c

•  Execute application and analyze performance data:
% pprof (for text based profile display)
% paraprof (for GUI)

5	

TAU Measurement Configuration

% cd $TAU; ls Makefile.*

Makefile.tau-pdt

Makefile.tau-mpi-pdt

Makefile.tau-shmem-pdt

Makefile.tau-mpi-openmp-pdt

Makefile.tau-papi-mpi-pdt

Makefile.tau-papi-pthread-pdt

•  For a SHMEM application, you may want to start with:
Makefile.tau-shmem-pdt

–  Supports MPI instrumentation & PDT for automatic source instrumentation
–  % export TAU_MAKEFILE=$TAU/Makefile.tau-shmem-pdt
–  % tau_cc.sh cpi.c –o cpi.x
–  % oshrun –np 256 ./cpi.x
–  % paraprof

TAU’s ParaProf Profile Browser

6	

TAU’s Communication Matrix Display:
OpenSHMEM rotput.f

7	

OpenSHMEM Profile: CPI Testcase, PE 0

8	

Jumpshot Trace Visualizer: CPI with
OpenSHMEM

9	

10	

Building and Using TAU on Cray XE6 with
Cray SHMEM
•  Configure TAU:

–  ./configure –bfd=download –pdt=<dir> -shmem –arch=craycnl –
pdt_c++=/usr/bin/g++

–  make install

•  Compiling:
–  setenv TAU_MAKEFILE $TAUDIR/craycnl/lib/Makefile.tau-

shmem-pdt-pgi
–  set path=($TAUDIR/craycnl/bin $path)
–  make CC=tau_cc.sh CXX=tau_cxx.sh
–  aprun –n 4 ./a.out

11	

SHMEM Profiling in UTS-1.1

12	

SHMEM Wrapper Instrumentation in UTS-1.1

13	

Communication Matrix (TAU_COMM_MATRIX=1)

14	

Tracing UTS 1.1: Jumpshot

15	

Tracing UTS 1.1: Jumpshot

16	

Tracing: Zooming in

17	

LiveDVD [http://www.hpclinux.com]

To profile a code using TAU:

1.   Choose TAU stub makefile
% export TAU_MAKEFILE=$TAU/Makefile.tau-[options]

2.   Change the compiler name to tau_cxx.sh, tau_f90.sh, tau_cc.sh:
% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

3.   If stub makefile has –papi in its name, set the TAU_METRICS
environment variable:
% export TAU_METRICS=TIME:PAPI_L2_DCM:PAPI_TOT_CYC...

4.   Execute the application:
% oshrun –np 4 ./a.out

5.   Build and run workshop examples, then run pprof/paraprof

18	

TAU Support Acknowledgements

•  Department of Energy (DOE)
–  Office of Science contracts
–  SciDAC contracts, LBL
–  LLNL-LANL-SNL ASC/NNSA contract
–  Battelle, PNNL contract

•  Department of Defense (DoD)
–  PETTT, HPTi

•  National Science Foundation (NSF)
–  POINT, SI-2

