
OpenSHMEM in the Era of Exascale

BoF, SC18

Wednesday, Nov 14, 2018, 5:15pm – 6:45pm, C145

Sameer Shende

ParaTools, Inc.

sameer@paratools.com

http://tau.uoregon.edu

http://taucommander.com

1

mailto:sameer@paratools.com
http://tau.uoregon.edu
http://taucommander.com


This material is based upon work 
supported by Extreme Scale Systems Center, ORNL 

under subcontract 4000146681 Mod 5. 

2



• Memory allocation tracking feature in the TAU Peformance
System®:
• Track memory allocations by object type.
• Integrated with Open MPI implementation of OpenSHMEM.

• Improvements the TAU Performance System®:
• Support for hybrid CUDA+OpenSHMEM applications.
• Support for CUPTI derived metric API.
• Support for new OpenSHMEM API calls added in OpenSHMEM 1.4 

specification.
• Support for multithreaded OpenSHMEM application using 

shmem_init_thread.
• Improvements in TAU Commander:

• Support for hybrid CUDA+OpenSHMEM and multithreaded OpenSHMEM
applications added to user interface.

• Paper accepted to OpenSHMEM’18: Tracking Memory Usage in 
OpenSHMEM Runtimes with the TAU Performance System.

3



• Goal is to evaluate scalability of OpenSHMEM runtimes in 
terms of runtime memory usage as the number of PEs 
increases.
– By keeping arrays of sizes proportional to the number of PEs, 

an OpenSHMEM implementation may be limited in its 
scalability to millions of PEs.

• We extended TAU to track memory allocations within 
OpenSHMEM runtimes.
– Trigger atomic events with a value of memory usage from each 

PE.
– Trigger separate events according to the data type of the 

allocated objects, allowing determination of scaling behavior 
for different runtime object types.

• Postprocess data to chart memory usage by object type as 
number of PEs grows.

4



• New calls in TAU for tracking allocations
– Track “flat” allocations (no relationships maintained)

• Tau_track_class_allocation(name, size)
– Track hierarchical allocations

• Maintain allocation stack for context
• Tau_start_class_allocation(name, size, include_in_parent)
• Tau_stop_class_allocation(name, write_record)

– Included in profile alongside timing data
– Option to use context events: show where allocations occurred in the runtime

• Two context stacks: timer stack and allocation stack
• export TAU_MEM_CONTEXT=1

– Default weak empty implementation allows enabling and disabling 
instrumentation at runtime.

Tau_start_class_allocation(“a”, 10, 0);
Tau_start_class_allocation(“b”, 25, 0);
Tau_stop_class_allocation(“b”, 1);
Tau_stop_class_allocation(“a”, 1);
Tau_start_class_allocation(“b”, 10, 0);
Tau_stop_class_allocation(“b”, 1);

10 bytes allocated in object of type A
25 bytes allocated in object of type B (child of A)

10 bytes allocated in object of type B (not child)

alloc a 10
alloc b 35
alloc b <= a 25

Stored in profile:

5



• OpenMPI OPAL object system allows 
centralized instrumentation of allocations of 
OPAL objects
– Insert Tau_start_class_allocation, 

Tau_stop_class_allocation into opal_obj_new in 
opal/class/opal_object.h

• Tracking child objects requires manual instrumentation at the 
point of allocation
– Dynamically-allocated members are allocated outside the constructor

– Accomplished with dummy allocation regions
• Reopen allocation region with Tau_start_class_allocation as normal.

• Record child allocations

• Close parent allocation region with write_record = 0

6



• Tracking allocations by type requires one line of 
code inserted into Open MPI runtime
– static inline prevents use of library wrapper

7

Tracking Memory Usage in OpenSHMEM 5

Our initial implementation added a public API calls to TAU:

void Tau_track_class_allocation(const char * name , size_t size);

This call registers an allocation of a particular type (indicated by the name)
and size by triggering an atomic or context event within TAU. Adding a single
line to the Open MPI runtime code responsible for allocating memory for object
instances (opal obj new in opal/class/opal object.h) allows us to record
those allocations:

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t ));

Tau track class allocation(cls->cls name, cls->cls sizeof);

[...]
}

The initial implementation successfully allowed us to collect data on the
memory usage by data type, but did not allow for collection of hierarchical data.
Open MPI runtime objects often contain pointers to other objects which are
allocated during the initial construction of the first object or shortly thereafter
and are properly considered to be owned by the first object. We wished to 1)
where possible, automatically capture this hierarchical relationship and 2) where
not possible, provide a mechanism for manual instrumentation to define the
relationship. For our second implementation, we added two new API calls to
TAU:

void Tau_start_class_allocation(const char * name , size_t size ,
int include_in_parent );

void Tau_stop_class_allocation(const char * name , int record );

The Tau start class allocation and Tau stop class allocation calls
are used for recording the sizes of objects, including their child objects. When
an allocation region is started, new allocation regions opened within the parent
region are recorded as both a standard atomic event and as a context event indi-
cating, rather than the enclosing functions, the the enclosing allocation regions.
For example,

Tau_start_class_allocation("a", 10, 0);
Tau_start_class_allocation("b", 25, 0);
Tau_stop_class_allocation("b", 1);
Tau_stop_class_allocation("a", 1);
Tau_start_class_allocation("b", 10, 0);
Tau_stop_class_allocation("b", 1);

will record the atomic events

alloc a 10
alloc b 35
alloc b <= a 25



8

6 N. Chaimov et al.

which indicates that 10 bytes of a objects were allocated, 35 bytes of b objects
were allocated, and 25 bytes of the b objects were child allocations of a objects.

Allocations of most objects in the Open MPI runtime are captured by instru-
menting, as before, the opal obj new function in opal/class/opal object.h,
which is called to construct most objects in the OPAL class hierarchy. In this
implementation, we wrap the call to the class constructors for the object being in-
stantiated, which automatically captures any child allocations which occur inside
the constructor:

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;
assert(cls ->cls_sizeof >= sizeof(opal_object_t ));

Tau start class allocation(cls->cls name, cls->cls sizeof, 0);

#if OPAL_WANT_MEMCHECKER
object = (opal_object_t *) calloc(1, cls ->cls_sizeof );

#else
object = (opal_object_t *) malloc(cls ->cls_sizeof );

#endif
if (opal_class_init_epoch != cls ->cls_initialized) {

opal_class_initialize(cls);
}
if (NULL != object) {

object ->obj_class = cls;
object ->obj_reference_count = 1;

opal obj run constructors(object);

}

Tau stop class allocation(cls->cls name, 1);

return object;
}

By using allocation regions, this automatically captures any child allocations
that occur within the constructor of the class. For example, the constructor for
orte rml posted recv t allocates an object of type orte rml recv request t,
and this allocation is recorded as alloc orte rml posted recv t <= orte rml recv request t

in the profile.

This technique does not capture any child objects which are allocated outside
of the constructor for a class. There is no central location where such tracking
could be implemented, so any such child allocations are instrumented manually.
To do this, dummy allocation regions are used to indicate the parent of an alloca-
tion without actually recording an atomic event for the parent, which was already
record through opal obj new. To do this, Tau start class allocation is called
normally, child allocations are recorded, and Tau stop class allocation is then
called with the record parameter set to 0.

Allocations during 
constructors 
automatically 
attributed to 
enclosing 
allocation region



9

• Scaling GUPS from 16 to 
1024 PEs on Oregon 
Talapas system

• Record allocations of 
objects of interest and 
their child allocations

• Object types with 
largest allocations in 
runtime at 1024 PEs 
among selected types
• ompi_proc_t (117 MB)
• orte_namelist_t (child 

of oshmem_group_t) 
(100 MB)

• ompi_proc_t list (child 
of oshmem_group_t) 
(33.5 MB)

ompi_proc_t

orte_namelist_t in 
oshmem_group_t



10

opal_value_t

• Looking at all
runtime types 
shows 
opal_value_t is by 
far the largest user 
of memory
• Usages are spread 

out as children of 
many other object 
types.
• Reducing memory 

usage will improve 
scalability.



Tracking Memory Usage in OpenSHMEM
Runtimes with the TAU Performance System

Nicholas Chaimov1, Sameer Shende1, Allen Malony1,
Manjunath Gorentla Venkata2, and Neena Imam2

1 ParaTools, Inc.
2836 Kincaid St., Eugene, OR 97405, USA
{nchaimov,sameer,malony}@paratools.com

2 Oak Ridge National Laboratory
1 Bethel Valley Rd, Oak Ridge, TN 37831, USA

{manjugv,imamn}@ornl.gov

Abstract. As the exascale era approaches, it is becoming increasingly
important that runtimes be able to scale to very large numbers of pro-
cessing elements. However, by keeping arrays of sizes proportional to the
number of PEs, an OpenSHMEM implementation may be limited in its
scalability to millions of PEs. In this paper, we describe techniques for
tracking memory usage by OpenSHMEM runtimes, including attributing
memory usage to runtime objects according to type, maintaining data
about hierarchical relationships between objects and identification of the
source lines on which allocations occur. We implement these techniques
in the TAU Performance System using atomic and context events and
demonstrate their use in OpenSHMEM applications running within the
Open MPI runtime, collecting both profile and trace data. We describe
how we will use these tools to identify memory scalability bottlenecks in
OpenSHMEM runtimes.

Keywords: Open MPI · TAU · memory · scalability.

Acknowledgments. This work was sponsored by the U.S. Department of En-
ergy’s O�ce of Advanced Scientific Computing Research.This manuscript has
been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725
with the U.S. Department of Energy. The United States Government retainsand
the publisher, by accepting the article for publication, acknowledges that the
United States Government retains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.The Department of
Energy will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported
by the O�ce of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

Abstract. As the exascale era approaches, it is 
becoming increasingly important that runtimes be 
able to scale to very large numbers of pro- cessing
elements. However, by keeping arrays of sizes 
proportional to the number of PEs, an OpenSHMEM
implementation may be limited in its scalability to 
millions of PEs. In this paper, we describe 
techniques for tracking memory usage by 
OpenSHMEM runtimes, including attributing 
memory usage to runtime objects according to 
type, maintaining data about hierarchical 
relationships between objects and identification of 
the source lines on which allocations occur. We 
implement these techniques in the TAU 
Performance System using atomic and context 
events and demonstrate their use in OpenSHMEM
applications running within the Open MPI runtime, 
collecting both profile and trace data. We describe 
how we use these tools to identify memory 
scalability bottlenecks in OpenSHMEM runtimes. 

11



• We have added support to TAU for collecting 
data on GPU kernels executing in the CUDA 
runtime for OpenSHMEM applications.
– Data for each GPU device upon which kernels are 

executed by a PE are stored in profiles for “virtual 
threads” representing the GPU device.

– Host-level CUDA API calls are recorded alongside 
OpenSHMEM API calls in the profile for the PE’s main 
thread.

– Feature parity in TAU between CUDA+MPI and 
CUDA+OpenSHMEM.

12



13

Host Thread
Device virtual thread



14

Device virtual thread
Kernels and Copies

Host Thread
CUDA API calls and 

OpenSHMEM API calls



• CUPTI Derived Metrics are now supported in 
TAU.
– Based on a set of underlying CUPTI events and 

device-specific constants.
– Specifying a derived metric automatically selects the 

underlying events and outputs the derived metric as 
a TAU metric in the profile.

• tau_cupti_avail –m prints supported CUPTI 
derived metrics.

• Add to TAU_METRICS environment variable to 
enable.

15



• export 
TAU_METRICS=TIME:achieved_occupancy

• Automatically enables 
domain_d.active_cycles and 
domain_d.active_warps and calculates 
achieved occupancy based on those events.

16



• TAU’s OpenSHMEM library wrapper generator 

now automatically generates wrapper functions 

for API calls added in the OpenSHMEM 1.4 

specification. 

– Implemented support in TAU for the new initialization 

function (shmem_init_thread)

– Implemented support in TAU for the new context-

based communication functions 

(shmem_ctx_create, shmem_ctx_destroy, 

shmem_ctx_get, etc.).

17



• Implemented support in TAU for collecting 

performance profiles and traces for 

OpenSHMEM applications which use the 

SHMEM_THREAD_MULTIPLE mode.

– Enabled when TAU is configured with both 

OpenSHMEM and a threading library (pthreads or 

OpenMP).

– When used with OpenMP, OMPT-TR6 support in TAU 

can be used to tune the level of overhead 

experienced by enabling or disabling sets of events. 

18



• SSCA threaded benchmark from Oak Ridge 
OpenSHMEM Benchmarks.

19

Thread 0 = master

OpenMP worker threads



20

OpenSHMEM library 
wrapper + OMPT 
records OpenSHMEM
API calls within OpenMP 
worker threads

TAU v2.28 released with all these features at SC18:
http://tau.uoregon.edu


