
Performance Analysis of MPI RMA in
Supporting OpenSHMEM Runtime

Min Si, Huansong Fu, Pavan Balaji
Programming Models and Runtime Systems Group

Argonne National Laboratory, USA

OpenSHMEM over MPI and Challenges

§ OpenSHMEM
– Specialized API for fast one-sided communication
– Directly mapping to low-level network to ensure high performance

§ MPI
– Low level library focusing on completeness of feature (e.g., two-sided, one-sided, collectives,

various operation types, various data types)
§ OpenSHMEM over MPI ?

– Improve portability but may raise over-generalization issues
– Is MPI suitable as the underlying runtime of OpenSHMEM ?

• Performance analysis and optimizations

OpenSHMEM

MPI

PortalsOFI UCX uGNI TOFU …

SHMEM PUT Latency Analysis and Optimizations

§ Measured intra-node latency between two
processes

– shmem_putmem + shmem_quiet
– Inter-node shows similar trend but less gap

§ OSHMPI implementation
– shmem_putmem

• MPI_Put + MPI_Win_flush_local
– shmem_quiet

• MPI_Win_flush_all(symm_heap_win)
• MPI_Win_flush_all(symm_data_win)
• MPI_Win_sync(symm_heap_win)
• MPI_Win_sync(symm_data_win)

§ Key bottleneck in OSHMPI/MPICH
– MPICH always makes “full progress” in flush

routines to ensure completion of all MPI
communications (i.e., two-sided, collective,
internal active message)

– Optimization: if only HW RMA is involved, we
can skip expensive “full progress polling” if no
outstanding RMA exists.

0.97 0.96 1.09 1.09 1.08 1.21 1.67

0.63 0.64 0.76 0.78 0.76 0.89 1.43

0.63 0.62 0.66 0.67 0.65 0.75
1.23

0

1

10

100

1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Data size (Bytes)

OSHMPI w/ MPICH-OFI
OSHMPI w/ MPICH-OFI (optimized progress)
SOS w/ OFI
OFI (ofi_write)

Intranode shmem_putmem + quiet latency
on Argonne Bebop (Intel Broadwell, Omni-Path)

SHMEM Nonblocking PUT Message Rate Analysis

§ Measured message rate between two
processes

– Multiple times shmem_putmem_nbi +
shmem_quiet

– Similar trend in inter-node message rate, but
less gap

§ OSHMPI implementation
– shmem_putmem_nbi

• MPI_Put
– shmem_quiet

• MPI_Win_flush_all(symm_heap_win)
• MPI_Win_flush_all(symm_data_win)
• MPI_Win_sync(symm_heap_win)
• MPI_Win_sync(symm_data_win)

§ Performance gap between OSHMPI and SOS
– MPI internal processing overhead (e.g., MPI

datatype)
– Need instruction count level analysis

(ongoing)

1E+4

1E+5

1E+6

1E+7

1 2 4 8 16 32 64 12
8

25
6

51
2 1k 2k 4k 8k

M
es

sa
ge

s
/ s

Data size (Bytes)

OSHMPI w/ MPICH-OFI
SOS
OFI

Intranode shmem_putmem_nbi + quiet message rate
on Argonne Bebop (Intel Broadwell, Omni-Path)

Summary

§ Analysis summary:
– Focused on SHMEM PUT/GET latency and nonblocking PUT/GET message rate
– MPICH generic progress engine causes high overhead
– By skipping the full progress polling in MPICH when only RMA is involved, OSHMPI achieves

comparable latency and message rate to SOS on an Omni-Path platform

§ Software release:
– OSHMPI 2.0b1 version has been released at SC18
– Support OpenSHMEM 1.4
– Fully inlined functions to ensure low overhead in OSHMPI layer
– Provide active-message based SHMEM atomic implementation as the generic fallback

• MPI accumulates cannot be directly used, because MPI does not support atomicity between different
operations, e.g., add and cswap.

§ Next step:
– Systemically analyze internal instruction count consumption of put/get and quiet routines
– Explore ways to safely utilize MPI accumulates for SHMEM atomics, standardize in MPI
– Analyzing overhead of other SHMEM communication routines

