
HOOVER: Distributed, Flexible, and Scalable
Streaming Graph Processing on OpenSHMEM

Max Grossman, Vivek Sarkar

1

Rice University, Georgia Institute of Technology

Past Work: AsyncSHMEM

2

Node0
Master
Thread

As
yn

cS
HM

EM
 e

xt
en

sio
ns

Current OpenSHMEM Runtime

. . .

Worker Threads

Node1
Master
Thread

As
yn

cS
HM

EM
 e

xt
en

sio
ns

Current OpenSHMEM Runtime

. . .

Worker Threads

. . .

Offload Runtime

3

Computation
Worker

Computation
Worker

Communication
Worker

PE 0 PE 1

Computation
Worker

...

pop push

steal

get

barrier_
all

lock

OpenSHMEM
Implementation

RDMA

put

Creating an asynchronous task: shmem_task()

4

void foo(void *data) {// Body of child task
. . .

}

void entrypoint(void *args) { // Body of root task
shmem_task(foo, NULL);

}

int main(int argc, char** argv) {
shmem_worker_init(entrypoint, NULL);

}

void shmem_task(void (*body)(void *), void *data);
Creates an asynchronous task defined by body (like “begin” construct in Chapel)

5

Example of DAG parallelism using futures
Futures enable more complex dependency graphs than fork-join tasks

void task_4(void *task4_prom) {
// some computation
shmem_satisfy_promise((shmem_promise_t *)task4_prom);

}
void task_5(void *task5_prom) {

// some computation
shmem_satisfy_promise((shmem_promise_t *)task5_prom);

}

shmem_task_await(task_1, args, shmem_future_for_promise(task4_prom));
shmem_task_await(task_2, args, shmem_future_for_promise(task5_prom));
shmem_task_await(task_3, args, shmem_future_for_promise(task4_prom),

shmem_future_for_promise(task5_prom));
shmem_task(task_4, task4_prom);
shmem_task(task_5, task5_prom);

Communication-driven tasks allow remote communication to trigger asynchronous
task creation on a PE.

Analogous to existing shmem_wait APIs, but these APIs do not block, and also
offer single- and multi-condition variants.

API Extensions: Communication-Driven Tasks

6

void shmem_int_task_when(int *ivar, int cond, int value,
void (*body)(void *), void *data);

Create an asynchronous task when the specified condition is satisfied on the specified location in the symmetric
heap. Analogous to shmem_int_wait_until, except that this call never blocks.

void shmem_int_task_when_any(int **ivars, int cond, int *values,
void (*body)(void *), void *data);

Same as shmem_int_task_when, but allows waiting for any of multiple conditions.

UTS results
UTS (T1XXL) – Offload approach

7

 0

 50

 100

 150

 200

 250

 300

32 64 128 256 512 1024

To
ta

l e
xe

cu
tio

n
tim

e
(s

)

Total nodes on Titan (16 cores per node)
OpenSHMEM+OpenMP
OpenSHMEM+OpenMP Tasks

AsyncSHMEM

AsyncSHMEM
integration improves

computation-
communication

overlap, scalability

8

Target Class of Problems
Streaming, dynamic graphs with edge and vertex
additions/removals.

Graph is naturally partitioned across PEs.
• Partitions of graph in different PEs have few cross-PE

edges.
• PEs are naturally de-coupled by properties of the

graph.

As graph evolves over time, inter-PE connectivity may
grow.

Based on connectivity, PEs may choose to begin lockstep
execution to enable closer sharing of data.
• May lead to a few islands of PEs, or one global cluster.

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5

9

HOOVER First published at OpenSHMEM 2017

Iterative dynamic graph modeling and analysis framework.
• Be able to update/mutate graphs
• Then analyze impact those updates have had on

structure or other properties.

C/C++ library built on OpenSHMEM 1.4 – PGAS-by-design.

Emphasis on de-coupled execution – communication is
always one-sided and as localized as possible.

Runtime manages all computation and communication.

Users provide callbacks that implement application-specific
functionality (similar to other graph frameworks, but better
supporting more sophisticated applications).

0

1
0

0

0
0

0

0 01
1 1

0
0

1

1

0
01

1
1

1

1

HOOVER sucking up your dynamic data…

0

1
0

0

0
0

0

0 01
1 1

0
0

10
01

1
1

1

1

10

HOOVER API Example – Fraud Detection
Vertices represent transactions.

Vertex attributes may be source acct,
destination acct, amount, etc.

Edges represent similarities/relations
between transactions.

start_iteration(vertex_iterator, ctx) {
Ingest data from external data streams;

Inject into HOOVER graph as vertices;
}

update_vertex(vertex, neighbors) {
Identify normative graph patterns from each vertex;

}

update_coupled(vertex_iterator, ctx) {
Identify anomalies based on global normative patterns;

Enter lockstep with PEs that share anomalies;
}

should_terminate(vertex_iterator, ctx) {
Print diagnostics, decide whether to exit;

}

start_iteration

should_terminate

update_coupled

update_vertex

11

Updates Since OpenSHMEM 2018
Complete refactor of the runtime and programming model.
• >6000 LOC added, >4700 LOC deleted
• Large throughput improvements thanks to runtime refactoring
• Move to iterate-to-convergence programming model
• Port existing applications, benchmarks, and tests to the new model

Contribution of mosquito-borne
illness model by Wenbin Liu (SBU).

Extensions and improvements to
graph-based anomaly detection
application.

Throughput scaling of graph-based anomaly detection on Edison.
Old = October 2018. New = November 2018.

12

Ongoing Work
Wes Suttle (SBU): Using HOOVER as a use case for exploring fault tolerance in OSSS
OpenSHMEM.

Max Grossman (Rice):
• Continued performance improvements

• Experiment with active messages (supported by work by Jack Snyder, Duke University)
• Comparison to other graph modeling frameworks (e.g. GraphX)

• Cross-OpenSHMEM implementation performance comparisons

• Additional application development (Long Distance Leonard Jones)
• Multi-threading support

• GPU support

13

Conclusions
HOOVER: an iterative dynamic graph modeling and analysis
framework.

Emphasis on de-synchronized, de-coupled execution – one-sided
and PGAS by default.

This adds complexity to the programming model and runtime.

But enables scalability in a way that bulk synchronous models
can’t.

PE 0

PE 2

PE 4

PE 1

PE 3

PE 5
Github: https://github.com/agrippa/hoover
Contact: max.grossman@rice.edu

https://github.com/agrippa/hoover
mailto:max.grossman@rice.edu

14

Acknowledgements

