TAU Update

OpenSHMEM in the Era of Exascale
BoF, SC18
Wednesday, Nov 14, 2018, 5:15pm — 6:45pm, C145
Sameer Shende
ParaTools, Inc.
sameer@paratools.com

http://tau.uoregon.edu

http://taucommander.com

mailto:sameer@paratools.com
http://tau.uoregon.edu
http://taucommander.com

Acknowledgment

OAK
RIDGE

wal Laborato

This material is based upon work
supported by Extreme Scale Systems Center, ORNL
under subcontract 4000146681 Mod 5.

FY18 Accomplishments

* Memory allocation tracking feature in the TAU Peformance
System®:
 Track memory allocations by object type.
* Integrated with Open MPI implementation of OpenSHMEM.

* Improvements the TAU Performance System®:
e Support for hybrid CUDA+OpenSHMEM applications.
e Support for CUPTI derived metric API.

e Support for new OpenSHMEM API calls added in OpenSHMEM 1.4
specification.

e Support for multithreaded OpenSHMEM application using
shmem_init_thread.

* Improvements in TAU Commander:

e Support for hybrid CUDA+OpenSHMEM and multithreaded OpenSHMEM
applications added to user interface.

* Paper accepted to OpenSHMEM’18: Tracking Memory Usage in
OpenSHMEM Runtimes with the TAU Performance System.

Memory Tracking

e Goalis to evaluate scalability of OpenSHMEM runtimes in
terms of runtime memory usage as the number of PEs
Increases.

— By keeping arrays of sizes proportional to the number of PEs,

an OpenSHMEM implementation may be limited in its
scalability to millions of PEs.

* We extended TAU to track memory allocations within
OpenSHMEM runtimes.

— Trigger atomic events with a value of memory usage from each
PE.

— Trigger separate events according to the data type of the
allocated objects, allowing determination of scaling behavior
for different runtime object types.

* Postprocess data to chart memory usage by object type as
number of PEs grows.

Allocation Classes

 New calls in TAU for tracking allocations

— Track “flat” allocations (no relationships maintained)
* Tau_track class_allocation(name, size)

— Track hierarchical allocations
* Maintain allocation stack for context
* Tau_start_class_allocation(name, size, include_in_parent)
* Tau_stop_class_allocation(name, write_record)

— Included in profile alongside timing data

— Option to use context events: show where allocations occurred in the runtime

* Two context stacks: timer stack and allocation stack
* export TAU_MEM_CONTEXT=1

— Default weak empty implementation allows enabling and disabling
instrumentation at runtime.

Tau_start_class_allocation(“a”, 10, 0); —— 10 bytes allocated in object of type A

Tau_start_class_allocation(“b”, 25, @); —» 25 pytes allocated in object of type B (child of A)
Tau_stop class_allocation(“b”, 1);

Tau_stop class_allocation(“a”, 1);

Tau_start_class_allocation(“b”, 10, @); —— 10 bytes allocated in object of type B (not child)
Tau_stop class_allocation(“b”, 1);

alloc a 10

Stored in profile: alloc b 35
alloc b <= a 25

Instrumenting Open MPI

* OpenMPI OPAL object system allows

centralized instrumentation of allocations of
OPAL objects

— |Insert Tau_start _class _allocation,

Tau_stop_class_allocation iNtO opal obj new IN
opal/class/opal _object.h
* Tracking child objects requires manual instrumentation at the
point of allocation

— Dynamically-allocated members are allocated outside the constructor

— Accomplished with dummy allocation regions
* Reopen allocation region with Tau_start_class_allocation as normal.
* Record child allocations
* Close parent allocation region with write_record =0

Tracking Flat Allocations

* Tracking allocations by type requires one line of
code inserted into Open MPI runtime

— static inline prevents use of library wrapper

static inline opal_object_t *opal_obj_new(opal_class_t * cls)
{

opal_object_t *object;

assert(cls->cls_sizeof >= sizeof (opal_object_t));

Tau_track_class_allocation(cls->cls_name, cls->cls_sizeof);

[...]
+

Tracking Hierarchical Allocations

static inline opal_object_t *opal_obj_new(opal_class_t * cls
{

opal_object_t *object;

assert (cls->cls_sizeof >= sizeof (opal_object_t));

Tau_start_class_allocation(cls->cls_name, cls->cls_sizeof, 0);

#if OPAL_WANT_MEMCHECKER

object = (opal_object_t *) calloc(l, cls->cls_sizeof);
#else
object = (opal_object_t *) malloc(cls->cls_sizeof);
#endif
if (opal_class_init_epoch != cls->cls_initialized) {
opal_class_initialize(cls);
}
if (NULL != object) { Allocations during
object->obj_class = cls; constructors
object->obj_reference_count = 1; .
. . automatically
opal_obj run _constructors(object); i ——]
) attributed to
Tau_stop_class_allocation(cls->cls name, 1); enclosmg
return object; allocation region

Preliminary Results with GUPS

3.04

2.0

0.5

0.0~

1e8 Bytes consumed by objects of given type in GUPS from 16 to 1024 ranks

Timer

I alloc ompi_proc_t
alloc orte_namelist_t <= oshmem_group_t

comm_request_item_t <= oshmem_group_t
communicator_t

m_group_t

libnbc_module_t <= oshmem_group_t
Vi _t <= oshmem_group_t

-~ module_t <= oshmem_group_t
scoll_mpi_module_t <= oshmem_group_t
p_t

t <= oshmem_group_t

B alloc ompi_comm_cid_context_t <= oshmem_group_t
alloc ompi_comm_allreduce_context_t <= oshmem_group_t
B alloc avail_coll_t <= oshmem_group_t
B alloc mca_scoll_basic_module_t <= oshmem_group_t
B alloc ompi_group_t <= oshmem_group_t

7 B alloc opal_hash_table_t <= oshmem_group_t

alloc oshmem_group_cache_t

orte_namelist_t in
oshmem_group_t

Scaling GUPS from 16 to
1024 PEs on Oregon
Talapas system

Record allocations of
objects of interest and
their child allocations

Object types with
largest allocations in
runtime at 1024 PEs
among selected types

* ompi_proc_t (117 MB)

* orte_namelist_t (child
of oshmem_group _t)
(100 MB)

* ompi_proc_t list (child

of oshmem_group _t)
(33.5 MB)

All Types

* Looking at all
runtime types
shows
opal value_tis by
far the largest user
of memory

e Usages are spread
out as children of
many other object

types.

* Reducing memory
usage will improve
scalability.

OpenSHMEM’18 Paper

Tracking Memory Usage in OpenSHMEM
Runtimes with the TAU Performance System

Nicholas Chaimov!, Sameer Shende!, Allen Malony!,
Manjunath Gorentla Venkata?, and Neena Imam?

! ParaTools, Inc
2836 Kincaid St., Eugene, OR 97405, USA
{nchaimov, sameer ,malony}@paratools.com
2 Oak Ridge National Labor: atory
1 Bethel Valley Rd, Oak Ridge, TN 3
{manjugy, inann}eornl . gov

Abstract. As the exascale era approaches, it is becoming increasingly
important that runtimes be able to scale to v rge numbers of pro-
cessing elements. However, by keeping arrays of sizes proportional to the
number of PEs, an OpenSHMEM implementation may be limited in its
scalability to millions of PEs. In this paper, we des hniques for
(ri(k\ng memory usage 1»_»— OpenSH\IE\I runtime ributing

age ining data

ions occur. We implement these techniques
m using atomic and context events and
demonstrate their use in OpenSHMEM applications running within the
Open MPI runtime, collecting both profile and trace data. We describe
how we will use these tools to identify memory scalability bottlenecks in
OpenSHMEM runtimes.

Keywords: Open MPI - TAU - memory - scalability.

Acknowledgments. This work was sponsored by the U.S. Department of En-

ergy’s Office of Advanced Scientific Computing Research.This manuscript has
been authored by UT-Battelle, LLC under Contract No. DE-AC05-000R22725
with the U.S. Department of Energy. The United States Government retainsand
the publisher. ccepting the article for publication, acknowledges that the

United States Government retains a non-exclusive, paid-up, irrevocable, world-

wide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes.The Department of
Energy will provide public access to these results of federally sponsored research in

accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-

public-access-plan). This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported

by the Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-000R22725.

Abstract. As the exascale era approaches, it is
becoming increasingly important that runtimes be
able to scale to very large numbers of pro- cessing
elements. However, by keeping arrays of sizes
proportional to the number of PEs, an OpenSHMEM
implementation may be limited in its scalability to
millions of PEs. In this paper, we describe
techniques for tracking memory usage by
OpenSHMEM runtimes, including attributing
memory usage to runtime objects according to
type, maintaining data about hierarchical
relationships between objects and identification of
the source lines on which allocations occur. We
implement these techniques in the TAU
Performance System using atomic and context
events and demonstrate their use in OpenSHMEM
applications running within the Open MPI runtime,
collecting both profile and trace data. We describe
how we use these tools to identify memory
scalability bottlenecks in OpenSHMEM runtimes.

Hybrid CUDA+OpenSHMEM

 We have added support to TAU for collecting
data on GPU kernels executing in the CUDA
runtime for OpenSHMEM applications.
— Data for each GPU device upon which kernels are

executed by a PE are stored in profiles for “virtual
threads” representing the GPU device.

— Host-level CUDA API calls are recorded alongside
OpenSHMEM API calls in the profile for the PE’s main

thread.

— Feature parity in TAU between CUDA+MPI and
CUDA+OpenSHMEM.

Hybrid CUDA+OpenSHMEM in ParaProf

® TAU: ParaProf: matmult_shmem.ppk

Metric: TAUGPU_TIME
Value: Exclusive

Std. Dev. | sl [l W]
Mean | | el el i
Max | sl 20 O eeessl bl [6
Min | sl sl i

node 0, thread 0 |

[—
node 0, thread 1 [——
node 1, thread 0 | e L T T 1
[—
[—

node 1, thread 1 [

node 2, thread 0 |

node 2, thread 1 [l
node 3, thread 0 |

node 3, thread 1 =]

Host Thread

Device virtual thread

Hybrid CUDA+OpenSHMEM in ParaProf

Metric: TAUGPU_TIME
Value: Exclusive
Units: seconds

0. 12 T |

0.041 [—
0.005 [
0.004 [
0.002 [

multiply_matrices(float*, float*, float*, int)
multiply_matrices_shared_blocks(float*, float*, float*, int
.TAU application

Memory copy Device to Host

Memory copy Host to Device

Device virtual thread
Kernels and Copies

Metric: TAUGPU_TIME
Value: Exclusive
Units: seconds

0.629 |

0.185 |—
0.164
0.056]

0.025
0.008
0.004
0.002

7.7E-4
6.6E-4
3.3E-4
4.7E-5
3.0E-5
2.7E-5
1.8E-5
1.3E-5
1.3E-5
1.3E-5
8.0E-6
7.0E-6
5.0E-6
5.0E-6
5.0E-6
2.0E-6
2.0E-6
2.0E-6

O
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

cudaStreamCreate
cudaThreadExit
cudaStreamSynchronize
void shmem_init(void) C
.TAU application
cudaMemcpyAsync

void shmem_barrier_all(void) C
cudaGetDeviceProperties
cudalaunch

cudaMalloc

void shmem_collect64(void *, const void *, size_t, int, in
cudaGetDevice
cudaSetDevice
cudaEventCreate
cudaDeviceSynchronize
cudaEventSynchronize
cudaFree
cudaStreamDestroy

void shmem_finalize(void) C
cudaGetDeviceCount
cudaConfigureCall
cudaEventDestroy
cudaSetupArgument
cudaGetlastError

int shmem_my_pe(void) C
int shmem_n_pes(void) C

Host Thread
CUDA API calls and
OpenSHMEM API calls

CUPTI Derived Metrics

 CUPTI Derived Metrics are now supported in
TAU.

— Based on a set of underlying CUPTI events and
device-specific constants.

— Specifying a derived metric automatically selects the
underlying events and outputs the derived metric as
a TAU metric in the profile.

 tau cupti avail -m prints supported CUPTI
derived metrics.

 Add to TAU _METRICS environment variable to
enable.

CUPTI Derived Metrics Example

* export
TAU METRICS=TIME:achieved occupancy
* Automatically enables
domain_d.active cycles and
domain d.active warps and calculates
achieved occupancy based on those events.

TAU: ParaProf: node 0, thread 1 - foo.ppk

(o]
ory copy Host to Device

OpenSHMEM 1.4 Support

 TAU’s OpenSHMEM library wrapper generator
now automatically generates wrapper functions
for APl calls added in the OpenSHMEM 1.4
specification.

— Implemented support in TAU for the new initialization
function (shmem_init thread)

— Implemented support in TAU for the new context-
based communication functions

(shmem_ ctx create, shmem ctx destroy,
shmem ctx get, etc.).

Multithreaded OpenSHMEM support

* Implemented support in TAU for collecting
performance profiles and traces for
OpenSHMEM applications which use the
SHMEM_THREAD_MULTIPLE mode.

— Enabled when TAU is configured with both
OpenSHMEM and a threading library (pthreads or
OpenMP).

— When used with OpenMP, OMPT-TR6 support in TAU

can be used to tune the level of overhead
experienced by enabling or disabling sets of events.

Threaded SSCA OpenMP+SHMEM profile

* SSCA threaded benchmark from Oak Ridge
OpenSHMEM Benchmarks.

TAU: ParaProf: ssca1-multi-threads-scale22-ebs.ppk

Metric: TIME
Value: Exclusive

Std. Dev. [immioiel [—

Mean [Tl ol (el

Max [] = [[—
Min [e] 1] —
node 0, thread 0 [l I n— = Thread 0 = master
node 0, thread 1 [
node 0, thread 2 [ol Tl
, [

S e —— o ¥ OpenMP worker threads
node 0, thread 5 [I
node 0, thread 6 [el [N
node 1, thread 0 [l T 01110 {1/ —
node 1, thread 1 [[l
node 1, thread 2 [T [l
node 1, thread 3 [
node 1, thread 4 [[l e
node 1, thread 5 [(o]
node 1, thread 6 [T Tl
node 2, thread 0 (S il el (I [T —
node 2, thread 1 [I
node 2, thread 2 [Il (I
node 2, thread 3 [I
node 2. thread 4 [l— -

TAU support for OpenSHMEM and OMPT

® TAU: ParaProf: node O, thread 1 - ssca1-multi-scale28.ppk

Metric: TIME
Value: Exclusive
Units: seconds

73.105 eessssssssssssssssssssssss——————— OpenMP_Implicit_Task

73.105 | | OpenMP_Thread_Type_ompt_thread_worker => OpenMP_Implicit_Task
0.959 0 OpenMP_Implicit_Task => void shmem_short_get(short *, const short *, size_t, int) C
0.959 f void shmem_short_get(short *, const short *, size_t, int) C [THROTTLED]

0.084 | OpenMP_Implicit_Task => void shmem_short_put(short *, const short *, size_t, int) C
0.084 | void shmem_short_put(short *, const short *, size_t, int) C [THROTTLED]
0.019 | OpenMP_ldle

|
|
|
0.019 : OpenMP_Thread_Type_ompt_thread_worker => OpenMP_ldle
|
I

0.003 | .TAU application => OpenMP_Thread_Type_ompt_thread_worker
0.003 | OpenMP_Thread_Type_ompt_thread_worker
7.9E-5 | .TAU application

OpenSHMEM library
wrapper + OMPT

records OpenSHMEM
API calls within OpenMP TAU v2.28 released with all these features at SC18:

http://tau.uoregon.edu

worker threads

