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OpenSHMEM over MPI and Challenges

§ OpenSHMEM
– Specialized API for fast one-sided communication
– Directly mapping to low-level network to ensure high performance

§ MPI
– Low level library focusing on completeness of feature (e.g., two-sided, one-sided, collectives, 

various operation types, various data types)
§ OpenSHMEM over MPI ?

– Improve portability but may raise over-generalization issues
– Is MPI suitable as the underlying runtime of OpenSHMEM ?

• Performance analysis and optimizations
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SHMEM PUT Latency Analysis and Optimizations

§ Measured intra-node latency between two 
processes

– shmem_putmem + shmem_quiet
– Inter-node shows similar trend but less gap

§ OSHMPI implementation
– shmem_putmem

• MPI_Put + MPI_Win_flush_local
– shmem_quiet

• MPI_Win_flush_all(symm_heap_win)
• MPI_Win_flush_all(symm_data_win)
• MPI_Win_sync(symm_heap_win)
• MPI_Win_sync(symm_data_win)

§ Key bottleneck in OSHMPI/MPICH
– MPICH always makes “full progress” in flush 

routines to ensure completion of all MPI 
communications (i.e., two-sided, collective, 
internal active message)

– Optimization: if only HW RMA is involved, we 
can skip expensive “full progress polling” if no 
outstanding RMA exists.
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SHMEM Nonblocking PUT Message Rate Analysis

§ Measured message rate between two 
processes

– Multiple times shmem_putmem_nbi + 
shmem_quiet

– Similar trend in inter-node message rate, but 
less gap

§ OSHMPI implementation
– shmem_putmem_nbi

• MPI_Put
– shmem_quiet

• MPI_Win_flush_all(symm_heap_win)
• MPI_Win_flush_all(symm_data_win)
• MPI_Win_sync(symm_heap_win)
• MPI_Win_sync(symm_data_win)

§ Performance gap between OSHMPI and SOS
– MPI internal processing overhead (e.g., MPI 

datatype)
– Need instruction count level analysis  

(ongoing)
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Summary

§ Analysis summary:
– Focused on SHMEM PUT/GET latency and nonblocking PUT/GET message rate
– MPICH generic progress engine causes high overhead
– By skipping the full progress polling in MPICH when only RMA is involved, OSHMPI achieves 

comparable latency and message rate to SOS on an Omni-Path platform

§ Software release: 
– OSHMPI 2.0b1 version has been released at SC18
– Support OpenSHMEM 1.4
– Fully inlined functions to ensure low overhead in OSHMPI layer
– Provide active-message based SHMEM atomic implementation as the generic fallback

• MPI accumulates cannot be directly used, because MPI does not support atomicity between different 
operations, e.g., add and cswap.

§ Next step:
– Systemically analyze internal instruction count consumption of put/get and quiet routines
– Explore ways to safely utilize MPI accumulates for SHMEM atomics, standardize in MPI 
– Analyzing overhead of other SHMEM communication routines


