UCHICAGO
ARGONNE...

Performance Analysis of MP| RMA in
Supporting OpenSHMEM Runtime

Min Si, Huansong Fu, Pavan Balaji
Programming Models and Runtime Systems Group
Argonne National Laboratory, USA

nne

' U.S. DEPARTMENT OF _ Argol National Laboratory is a
q B U.S. Department of Energy laboratory
"-»,,s‘ ENERGY managed by UChicago Argonne, , LLC.

AAAAAAAAAAAAAAAAAA

OpenSHMEM over MPI and Challenges

= OpenSHMEM
— Specialized API for fast one-sided communication
— Directly mapping to low-level network to ensure high performance

= MPI

— Low level library focusing on completeness of feature (e.g., two-sided, one-sided, collectives,
various operation types, various data types)

= OpenSHMEM over MPI ?

— Improve portability but may raise over-generalization issues

—Is MPI suitable as the underlying runtime of OpenSHMEM ?
« Performance analysis and optimizations

UCHICAGO L))
ARGONNE... Y%/

AAAAAAAAAAAAAAAAAA

SHMEM PUT Latency Analysis and Optimizations

» Measured intra-node latency between two

processes
— shmem_putmem + shmem_quiet
— Inter-node shows similar trend but less gap

= OSHMPI implementation

— shmem_putmem
« MPI_Put + MPI_Win_flush_local

— shmem_quiet
MPI_Win_flush_all(symm_heap_win)
MPI_Win_flush_all(symm_data_win)
MPI_Win_sync(symm_heap_win)
MPI_Win_sync(symm_data_win)

= Key bottleneck in OSHMPI/MPICH

— MPICH always makes “full progress” in flush
routines to ensure completion of all MPI
communications (i.e., two-sided, collective,
internal active message)

— Optimization: if only HW RMA is involved, we
can skip expensive “full progress polling” if no
outstanding RMA exists.

Argonne National Laboratory

77, U.S. DEPARTMENT OF isa
g] U.S. Department of f Energy laborato ry
c "-»,,v' ENERGY managed by UChicago Argonne, LLC.

1 =——OSHMPI w/ MPICH-OFI (optimized progress)
1——S0S w/ OF]
| =—OFI (ofi_write)

—_—
o
111l

10.97 0.96 1.09 1.09 1.08 1.21 1

Latency (us)

—

10.63 0.62 0.66 0.67 0.65 0-75

Intranode shmem_putmem + quiet latency
on Argonne Bebop (Intel Broadwell, Omni-Path)

OSHMPI w/ MPICH-OFI

1.67

1 4 16 64 256 1K 4K 16K 64K 256K 1M
Data size (Bytes)

AAAAAAAAAAAAAAAAAA

SHMEM Nonblocking PUT Message Rate Analysis

» Measured message rate between two
processes

— Multiple times shmem_putmem_nbi +
shmem_quiet

— Similar trend in inter-node message rate, but

less gap

= OSHMPI implementation

— shmem_putmem_nbi
« MPI_Put

— shmem_quiet
 MPI_Win_flush_all(symm_heap_win)
 MPI_Win_flush_all(symm_data_win)
* MPI_Win_sync(symm_heap_win)
* MPI_Win_sync(symm_data_win)

» Performance gap between OSHMPI and SOS
— MPI internal processing overhead (e.g., MPI

datatype)
— Need instruction count level analysis

(ongoing)

Argonne National

UCH|CAG° n T%, U.S. DEPARTMENT OF Laboratory is a
L 5 U.S. D rt t of E laborat
"‘-»,,J ENERGY managz%ab;" Lelghiocagrlae;\gréoﬁmoer,sig

ARGONNE...

Intranode shmem_putmem_nbi + quiet message rate
on Argonne Bebop (Intel Broadwell, Omni-Path)

1E+7 -

1E+6 -

Messages /s

RN

m
+

(@)
|

1E+4

-o—OSHMPI w/ MPICH-OFI
->«=S0S
-=-0OF|

~— AN <t 00 ©O N <t 00 © N X X X X
— M O N IO «~ — N T ©©
— (N 0O

Data size (Bytes)

AAAAAAAAAAAAAAAAAA

Summary

= Analysis summary:
— Focused on SHMEM PUT/GET latency and nonblocking PUT/GET message rate
— MPICH generic progress engine causes high overhead
— By skipping the full progress polling in MPICH when only RMA is involved, OSHMPI achieves
comparable latency and message rate to SOS on an Omni-Path platform

= Software release:
— OSHMPI 2.0b1 version has been released at SC18
— Support OpenSHMEM 1.4
— Fully inlined functions to ensure low overhead in OSHMPI layer

— Provide active-message based SHMEM atomic implementation as the generic fallback
« MPI accumulates cannot be directly used, because MPI does not support atomicity between different
operations, e.g., add and cswap.

= Next step:
— Systemically analyze internal instruction count consumption of put/get and quiet routines
— Explore ways to safely utilize MPIl accumulates for SHMEM atomics, standardize in MPI
— Analyzing overhead of other SHMEM communication routines

AAAAAAAAAAAAAAAAAA

