THE OPENSHMEM ANALYZER
Version 1.0

Oak Ridge National Laboratory
Computer Science Department and Mathematics Division
Computer Science Research Group
Extreme Scale Systems Center

http://www.csm.ornl.gov/essc/

University of Houston
Computer Science Department
High Performance Computing Tools Group

http://web.cs.uh.edu/ hpctools/

July 9, 2014

Copyright (©) 2014 Oak Ridge National Laboratory and University of Houston

http://www.csm.ornl.gov/essc/
http://web.cs.uh.edu/~hpctools/

OpenSHMEM Analyzer Guide

Contents
|List of Figures| 1
[Prefacel 3
[Audience Description|. L 3
.. 3
Status of Workl oo 3
1 Introductionl 4
1.1 Major Goals of the OpenSHMEM Analyzer| 4
|2 Basic Usage of the OpenSHMEM Analyzer| 5
2.1 Preparing Your Program for the OpenSHMEM Analyzer[.)
2.2 Using the OpenSHMEM Analyzer|. 5
221 Filename Conventionsl 6
2.3 How the OpenSHMEM Analyzer works|. 6
|13 Features of the OpenSHMEM Analyzer| 8
BI_Overviewl oo 8
[B.1.1 Callgraph| 8
[3.2 Displaying the OpenSHMEM Analyzer Warnings| 10
3.3 Analyses available with the OpenSHMEM Analyzer|. 11
3.4 The OpenSHMEM Analyzer Warning Messages| 11
3.4.1 Multiple OpenSHMEM initialization calls| 11
13.4.2 Non-symmetric variable used in OpenSHMEM call] 11
13.4.3 Out-of-bounds accesses in OpensHMEM calll 12
13.4.4 Out-of-bounds accesses in OpenSHMEM call determined with constant |
propagation (must use -O3)| 12
13.4.5 Out-of-bounds accesses in OpenSHMEM call with strided access| 12
[3.4.6 Pointer is initialized with the wrong memory allocator (non-symmetric)| 12
B.47 Global Pomter 1s not mitialized 00 13
13.4.8 Wrong storage type for typeless OpenSHMEM calll 13
4 Acknowledgements| 14
Append 15
|IA° Download and Install the OpenSHMEM Analyzer| 16
[A. 1l Download Locationl 16
[A2 Installation| 16
[A.2.1 Pre-built Executablel 16
B22750Urce . o o oo 16
[A.3 Tool Infrastructure Documentationl 16
IB Ongoing and Future Work| 17
[References] 18

OpenSHMEM Analyzer Guide

List of Figures

1 Phases generating the different analyses| 6
12 The OpensHMEM callgraph of the IS NAS parallel benchmark| 9
13 The color legend for the callgraph of an OpenSHMEM program| 9
|4 Application source code as displayed in the browser|. 9
15 Callgraph with the OpenSHMEM Analyzer warning messages| 10

OpenSHMEM Analyzer Guide

Preface

This User’s Manual describes the OpenSHMEM Analyzer [2], a tool that provides source
code analysis and correctness checks capabilities to the user for OpenSHMEM programs. It
provides a range of information about the source program in textual or graphical format. The
OpenSHMEM Analyzer relies on web browsers and the graph library GraphViz to render its
graphs and use of hyperlinks to navigate to the source code and warning messages.

Audience Description

This manual is a user’s guide only. Users are expected to have a basic knowledge of the
structure of programs and some experience with C and OpenSHMEM programming. The
OpenSHMEM Analyzer is available on most GNU/Linux distributions (e.g. Red Hat and
SUSE) with x86/x86-64 processors. It is assumed that users are familiar with the basic com-
mands on these systems.

Organization

This User’s Guide is structured into the following sections and appendices:

Section [Ik Introductionl gives an overview of the OpenSHMEM Analyzer Tool and de-

scribes its major goals;

Section 2} [Basic Usage of the OpenSHMEM Analyzer| describes naming conventions,
generated files and how to visualize the graphs and traverse the source code;

Section (3} [Features of the OpenSHMEM Analyzer| describes the features for local and
global analysis of OpenSHMEM programs and how to interpret the information within
the graphs;

Appendix [A} [Download and Install the OpenSHMEM Analyzer| describes how to ob-
tain and install the OpenSHMEM Analyzer either as a pre-built executable or in source
form;

Appendix [Ongoing and Future Work] is a quick view of on-going work of the OpenSHMEM
Analyzer and its future functionality.

Status of Work

The tool is currently in its infancy and there are many enhancements to be made, both with
analysis capabilities and with its use and invocation.

OpenSHMEM Analyzer Guide

1 Introduction

In this chapter we give an overview of the overall features of the OpenSHMEM Analyzer and
describe the structure of the system.

1.1 Major Goals of the OpenSHMEM Analyzer

Whenever application software is developed or ported to OpenSHMEM from a new or an
existing one, the source code must be carefully analyzed in order to understand many details
of the current implementation while at the same time to avoid common errors in OpenSHMEM
applications. The OpenSHMEM Analyzer is a tool to support an application developer or code
owner who wishes to understand their C application better. It provides a range of information
including the structure of a source program in a graphical browsable form. The current input
languages for the OpenSHMEM Analyzer are C/C++, OpenSHMEM API 1.0.

OpenSHMEM is a standard for SHMEM library implementations. Many SHMEM libraries
exist but they do not conform to a particular standard and have similar but not identical
APIs and behavior, which hinders portability. However, significant user efforts are required to
parallelize serial codes with OpenSHMEM or further analyze and optimize the performance
of OpenSHMEM programs. The OpenSHMEM Analyzer, with its comprehensive intra- and
inter-procedural analysis information, can be an indispensable assistant for writing, analyzing
and optimizing OpenSHMEM applications. The OpenSHMEM Analyzer has an interactive
component that provides a graphical user interface using HTML to display its output and to
navigate the source code and error messages within them.

The OpenSHMEM Analyzer is an on-going research project developed collaboratively by Oak
Ridge National Laboratories and the University of Houston, with funding from DOD. Its
functionality is based on the OpenUH compiler infrastructure, which is maintained by the
HPCTools Group at the University of Houston.

The OpenSHMEM Analyzer is intended to be an open source tool available for the OpenSHMEM
community.

OpenSHMEM Analyzer Guide

2 Basic Usage of the OpenSHMEM Analyzer

In this chapter the user will find:
e some hints on preparing programs for the OpenSHMEM Analyzer;
e invoking the OpenSHMEM Analyzer for the first time;
e naming/graphical conventions;

e how to visualize the results or manipulate graphs.

2.1 Preparing Your Program for the OpenSHMEM Analyzer

The first step of preparing a program to be analyzed by the OpenSHMEM Analyzer is to
compile it using the tool with a special set of flags. The user is responsible for modifying
the application’s makefiles, in order to reflect the compiler and flags setting changes. Since
the OpenSHMEM Analyzer is based on OpenUH, the following are the main drivers/compil-
ers:

uhcc | C compiler
uhCC | C++ compiler (beta evaluation)

In order to prepare your program, you must add the following flags: -shmem-analyzer -O3 for
the compile (-¢) and link commands as follows.

Compile commands:

$ uhcc -shmem-analyzer -03 -c myfile.c
$ uhcc -shmem-analyzer -03 -c myfile2.c

Link command:

$ uhcc -shmem-analyzer -03 myfile.o myfile2.0 -o myprogram

Note: To avoid long compilation times, the less aggressive optimization flag -O2 can be used
instead.

In this example, the OpenSHMEM Analyzer will generate a series of files with extensions html,
gif, dot, map, and msg.

This flag will, in future, allow additional information to be passed into the Analyzer, so that
analyses specific to a language or library can be selected.

2.2 Using the OpenSHMEM Analyzer

There are [2) modes of visualizing the results of the OpenSHMEM Analyzer:

1. when you build your program with the OpenSHMEM Analyzer, it will display the warn-
ings at the command line;

OpenSHMEM Analyzer Guide

2. the OpenSHMEM Analyzer is also able to display the warnings in a browser together

with the program callgraph.

2.2.1 Filename Conventions

The OpenSHMEM Analyzer creates several files with different extensions.

command:

The following

$ uhcc -shmem-analyzer -02 myfile.c -o myprogram

will generate the following files:

myprogram.html

This is the .html file that can be open with a browser. It
contains the callgraph and the warning messages from the
tools

myprogram.msg

Contains the error messages inter-

procedural analysis phase

collected during

myfile.c.html

This will contain the HTML version of the source code with

syntax highlighted and line number target links

myfile.c.msg

List of error messages generated during intra-procedural
analysis phase

myprogram.dot

This file contains the callgraph of the application in the

GraphViz format

myprogram.gif

This file contains the .gif image version of the callgraph

2.3 How the OpenSHMEM Analyzer works

The OpenSHMEM Analyzer relies on intra-procedural and inter-procedural analysis to detect
potential semantic program errors in the application. The types of warnings reported are
displayed during the various compilation phases of the tool. Figure [T shows how the different
phases generate the analyses:

Compilers: e

* Summarization P
& local analysis Rakll

* Global Analysis —__

Source Code

Figure 1: Phases generating the different analyses

The OpenSHMEM Analyzer generates warning messages at different compilation stages of
the code. The warning messages are then displayed at the command line or together in the

OpenSHMEM Analyzer Guide

callgraph. The OpenSHMEM Analyzer does not produce an executable file (in future releases
this feature will be enabled).

OpenSHMEM Analyzer Guide

3 Features of the OpenSHMEM Analyzer

3.1 Overview

The OpenSHMEM Analyzer will generate an HTML file with the callgraph of a program that
can be related to the source code via HT'ML links. In addition, the main HTML file contains

a list of warning messages generated by the tool which can be related to the source code via
HTML links.

The following command opens the HT'ML file that contains the callgraph and the warning
messages of the program (based on the previous example):

‘ $ firefox myprogram.html

(Or use any web browser of your choice.)

3.1.1 Callgraph

The call graph gives the structure of the program, where there is a node for each procedure
in the program and a directed edge linking a pair of nodes if and only if the procedure
corresponding to the source node may invoke the sink node’s procedure at run time. If you
click on a node, the source text of the corresponding procedure will be displayed in the HTML
browser. The edges of the graph represent the different callsites where the procedures are
invoked. The user can click on the edges to relate them to the source code. The callgraph
nodes are colored in the following format:

Procedures containing OpenSHMEM calls

Procedures not containing OpenSHMEM calls
Procedures representing OpenSHMEM

For the edges, callsites to OpenSHMEM are colored:

I/O operations (i.e. puts, gets) blue
Reductions purple
Broadcasts red
Atomics

Memory management calls (i.e. dynamic allocation / deallo-
cation of symmetric memory)

State calls (i.e. num_pes, my pe) green

Synchronization calls red

Figure [2| shows a portion of a callgraph generated for the IS NAS Parallel Benchmark.
In addition to the callgraph, the color legend for the nodes and edges is displayed in Fig-
ure

When a node or a callsite is clicked, the browser will display the corresponding source code
with highlighted syntax formatted in HTML, as in Figure [4]

OpenSHMEM Analyzer Guide

-
shmem:_barrier_al shmem_irk_put shmem ik et shmem_ink_sum to all

Figure 2: The OpenSHMEM callgraph of the IS NAS parallel benchmark

Legend:

I/O0
Reductions
Broadcast
Atomics
Memory Mgt
State Queries
Synchronizations
Contains OpenSHMEM
OpenSHMEM Call

Figure 3: The color legend for the callgraph of an OpenSHMEM program

_1 #define N 8

_2 #define M 10
#include <shmem.h>
int targglINl;

long froml[N];

int srcgln];

int main(void) {
int i, src[N];
long lget[N];
static int targ static[N];

start_pes(0);
for(i=o; i< N; i++) {

src[il = my_pe() + 1i;
froml[i] = my_pe() + i#i;

shmem_int_put(targg, srcg, N+M, 2);
shmem_int_put(targ_static, src, N+M, 3);
shmem_long_get(1lget, froml, N+M,4);

shmem_barrier_all(); /* sync sender and receiver */
return 1;

}

RlEREIGREREREERSGRIERIEE | o lols ke

29 void start_pes(int i){}

Figure 4: Application source code as displayed in the browser

OpenSHMEM Analyzer Guide

3.2 Displaying the OpenSHMEM Analyzer Warnings

The OpenSHMEM Analyzer is able to display OpenSHMEM warning messages together with
the callgraph. The warning messages are also displayed when the tool is invoked at the
command line. When the warning messages are displayed with the callgraph, each message
contains an HTML link that relates the message to the source code. Figure [5|is an example

of how the OpenSHMEM Analyzer displays its warning messages together with the source
code.

main
LI —
. - L ~—a e
start_pes my_pe shmem_int_put shmem_long_get shmem_barrier_all

Legend:
1/o
Reductions
Broadcast
Atomics
Memory Mgt
State Queries |
Synchronizations
Contains OpenSHMEM
OpenSHMEM Call

callgraph: test-bounds

[wiew] test-bounds. e-:20: warning: out of bounds access of shmem int put argl of 8 elements with access of 18 elements
[view] test-bounds. 02 20: warning: out of bounds access of shmem int put arg2 of 8 elements with access of 18 elements
[viewl] test-bounds c:21: warning: out of bounds access of shmem int put argl of 8 elements with access of 18 elements
[view] test-bounds.c:21: warning: out of bounds access of shmem int put arg2 of 8 elements with access of 18 elements
[view] test-bounds 0:22: warning: out of bounds arcess of shmem long_get arg2 of & elements with access of 18 elements
[wiewl] test-bounds. e:22: warning: out of bounds access of shmem long_get argl of & elements with access of 18 elements

Figure 5: Callgraph with the OpenSHMEM Analyzer warning messages

The messages contain the line number and the source file name of the OpenSHMEM call that
is triggering the warning.

10

OpenSHMEM Analyzer Guide

3.3 Analyses available with the OpenSHMEM Analyzer
The OpenSHMEM Analyzer is able to perform the following analyses:

check the ordering of OpenSHMEM initialization and finalization calls;

check if there is an OpenSHMEM initialization call in the program;

check if there is more than one OpenSHMEM initialization call;

check if OpenSHMEM calls are using symmetric memory variables;

check for out-of-bounds access for arrays in OpenSHMEM calls;

check for out-of-bounds strided access of arrays;

check if one of the arguments of the OpenSHMEM calls evaluates to NULL;

perform constant propagation and common sub-expression elimination to simplify the
arguments of an OpenSHMEM call (useful for checking if some arguments evaluate to
constants);

e check if pointers to symmetric data are allocated with shmalloc calls;

e check if any variables used in expressions of pointer arithmetic with symmetric variables
are initialized;

e check if global pointers to symmetric data are initialized;

e check if pointers to symmetric data are aliased with other pointers that can have side-
effects to the OpenSHMEM call;

e check if the OpenSHMEM calls arguments are of the correct types or storage allocation
for OpenSHMEM typeless calls.

3.4 The OpenSHMEM Analyzer Warning Messages

The following sections show examples of warning messages which the Analyzer tool can out-
put.

3.4.1 Multiple OpenSHMEM initialization calls

int main(...) { void sub (...) {

@3 O
sub(...); i
}

warning: more than one OpenSHMEM initialization call found

3.4.2 Non-symmetric variable used in OpenSHMEM call

int sub(...) {
long target, source;

(target, source, ...);

}

badget.c:65: warning: non-symmetric variable in arg2 of shmem_long_get

11

OpenSHMEM Analyzer Guide

3.4.3 Out-of-bounds accesses in OpenSHMEM call

#define N 8
#define M 8

int sub (...) {
static int targ[N], src[N];
(targ, src, N + M, 2);

}

test-bounds.c:20: warning: out of bounds access of shmem_int_put argl of 8
elements

3.4.4 Out-of-bounds accesses in OpenSHMEM call determined with constant
propagation (must use -O3)

#define N 8
#define M 8

int sub (...) {
int len = N;
static int targ[N], src[N];
for(i = 0; i < M; i++) len++;

(targ, src, lemn, 2);

}

test-bounds-constprog.c:23: warning: out of bounds access of shmem_int_put
argl of 8 elements with access of 16 elements

3.4.5 Out-of-bounds accesses in OpenSHMEM call with strided access

int src2[N];
int sub(...) {
(dest2, src2, 1, 2, N, npes - 1);

}

test_shmem_get_globals.c:297: warning: out of bounds access of shmem_iget32
arg? of 7 elements with access of 14 elements

3.4.6 Pointer is initialized with the wrong memory allocator (non-symmetric)

int sub(...) {
éi;at *y;
é‘; (float *) malloc((n_locall - n_local0 + 2) * sizeof (float));
: (&y[n_local0-1+1], &y[n_locall-1], 1, O+ 1),

}

shmem_heap.c:35: warning: variable argl of call shmem_float_put is
initialized with malloc

12

OpenSHMEM Analyzer Guide

3.4.7 Global Pointer is not initialized

float *y;
int sub(...) {

(&y[n_local0-1+1], &y[n_locall-1], 1, O+ 1)

}

shmem_heap-global.c:20: warning: global variable argl of call shmem_float_put
is uninitialized

3.4.8 Wrong storage type for typeless OpenSHMEM call

long lfrom;
int sub(void) {
(lget, lfrom, N, 4);

}

test-types.c:23: warning: wrong storage class of shmem_get32 arg2 of 8 bytes

13

OpenSHMEM Analyzer Guide

4 Acknowledgements

This work is supported by the United States Department of Defense and used resources of
the Extreme Scale Systems Center located at the Oak Ridge National Laboratory and the
HPCTools Group at the University of Houston.

14

OpenSHMEM Analyzer Guide

Appendices

15

OpenSHMEM Analyzer Guide

A Download and Install the OpenSHMEM Analyzer

A.1 Download Location

The project website for the OpenSHMEM Analyzer is:

http://www.openshmem. org/0SA

A.2 Installation

The OpenSHMEM Analyzer is available in the following ways:

A.2.1 Pre-built Executable

For immediate use, a tarball of the OpenSHMEM Analyzer, called
openuh-3.0.38-x86_64-bin.tar.bz2 |l
can be downloaded via the project website above. Then
1. extract the contents of the tarball to a directory, call it prefix;

2. prepend the directory prefix/openuh-3.0.38/bin to your PATH environment variable.

A.2.2 Source
The full source code of the OpenUH compiler containing the OpenSHMEM Analyzer can also
be downloaded from a repository via the project website above.

Configuration is via the common GNU Autotools configure command, so you can build in
situ or in a separate build directory. The OpenSHMEM Analyzer will be built when the
--enable-osa configure flag is used. Then do the usual make /make install sequence.

A.3 Tool Infrastructure Documentation

A paper describing the OpenUH compiler that is the infrastructure of the OpenSHMEM
Analyzer is in [1].

13.0.38 is the version at time of writing but will change in the future.

16

http://www.openshmem.org/OSA

OpenSHMEM Analyzer Guide

B Ongoing and Future Work

We plan to develop a stand-alone user interface to present an interactive callgraph and control
flow graph that are aware of OpenSHMEM calls and develop a triage between these different
views. The idea is that there will be a data flow view that originates from OpenSHMEM calls
and enables the user to see the use-define chains that can help to keep track of the use and
definition of pointers in OpenSHMEM calls. This will help the user evaluate the placement of a
particular call and how it is related to the rest of the application more intuitively. In addition,
we could develop a view to see how symmetric variables are accessed in the entire application,
since symmetric variables can affect many procedures (e.g. global variables, interprocedural
pointers). These sorts of views are important to understand the overall side effects of the
application.

The OpenSHMEM Analyzer is moving toward a proper infrastructure to perform parallel data
flow analysis is needed, and apply the state-of-the-art and how this relates to the context of
OpenSHMEM. As a first step, we will explore the concept of program slicing at the process
level, which is the process for separating the different control flow graphs from different pro-
cesses. The idea is to simplify the control flow graphs of a program per process and correctly
denote synchronizations across them. Through graph analysis we can classify the different
process control-flowgraphs into subsets that can be used to represent optimizations and where
classical program optimizations can be applied per OpenSHMEM task.

We plan to explore how to integrate better the OpenSHMEM Analyzer to the OpenSHMEM
library in a way that is more compiler friendly. We need to make sure the library implemen-
tation allows the compiler to analyze and optimize it together with the application. This will
include the inlining of all OpenSHMEM calls, their specialization to the application context,
constant propagation/dead code elimination, and elimination of redundant runtime checks.
The OpenSHMEM Analyzer could perform checks at compile time and define a set of asser-
tions that we can enforce at runtime to make sure the library is run in the right context,
reducing runtime checks and overheads [4} [3].

We will also explore how to integrate dynamic information to the OpenSHMEM Analyzer.
This will mean integrating it with performance tools such as TAU and the OpenSHMEM
Tracer. We will combine the OpenSHMEM Analyzer instrumentation with the OpenSHMEM
wrappers of these tools to gather calculate frequently executed paths in the control graph and
callgraph or values of variables at a given point of execution. This will help toward feedback
and present to the user a dynamic callgraph and control flow graph, that shows the execution
code coverage and the frequently accessed code path that can be specialized.

17

OpenSHMEM Analyzer Guide

References

1]

2l

3]

4]

Barbara Chapman, Deepak Eachempati, and Oscar Hernandez. Fxperiences Developing
the OpenUH Compiler and Runtime Infrastructure. International Journal of Parallel Pro-
grammang, pages 1-30, 2012.

Oscar Hernandez, Siddhartha Jana, Swaroop Pophale, Stephen Poole, Jeffery Kuehn, and
Barbara Chapman. The OpenSHMEM Analyzer. In The proceedings of the Sixth Confer-
ence on Partitioned Global Address Space Programming Models, Santa Barbara, CA, USA,
October 2012.

Swaroop Pophale, Oscar Hernandez, Stephen Poole, and Barbara Chapman. Static Anal-
yses for Unaligned Collective Synchronization Matching for OpenSHMEM. In Proceed-
ings of the Seventh Conference on Partitioned Global Address Space Programming Model,
PGAS 13, 2013.

Swaroop Pophale, Oscar Hernandez, Stephen Poole, and Barbara Chapman. Extending
the OpenSHMEM Analyzer to Perform Synchronization and Multi-valued Analysis. In
Stephen Poole, Oscar Hernandez, and Pavel Shamis, editors, OpenSHMEM and Related
Technologies. Experiences, Implementations, and Tools, volume 8356 of Lecture Notes in
Computer Science, pages 134-148. Springer International Publishing, 2014.

18

	List of Figures
	Preface
	Audience Description
	Organization
	Status of Work

	Introduction
	Major Goals of the OpenSHMEM Analyzer

	Basic Usage of the OpenSHMEM Analyzer
	Preparing Your Program for the OpenSHMEM Analyzer
	Using the OpenSHMEM Analyzer
	Filename Conventions

	How the OpenSHMEM Analyzer works

	Features of the OpenSHMEM Analyzer
	Overview
	Callgraph

	Displaying the OpenSHMEM Analyzer Warnings
	Analyses available with the OpenSHMEM Analyzer
	The OpenSHMEM Analyzer Warning Messages
	Multiple OpenSHMEM initialization calls
	Non-symmetric variable used in OpenSHMEM call
	Out-of-bounds accesses in OpenSHMEM call
	Out-of-bounds accesses in OpenSHMEM call determined with constant propagation (must use -O3)
	Out-of-bounds accesses in OpenSHMEM call with strided access
	Pointer is initialized with the wrong memory allocator (non-symmetric)
	Global Pointer is not initialized
	Wrong storage type for typeless OpenSHMEM call

	Acknowledgements
	Appendices
	Download and Install the OpenSHMEM Analyzer
	Download Location
	Installation
	Pre-built Executable
	Source

	Tool Infrastructure Documentation

	Ongoing and Future Work
	References

