
SHMEM TUTORIAL

Presenters: Swaroop Pophale and Tony Curtis

University of Houston, Texas

Outline

  Background
  History and Implementations
  SHMEM routines
  Getting started

  Code Example
  Closer look

  Performance
  Conclusions
  References

Background
What is SHMEM?

  SHared MEMory library (SPMD model)
  Library of functions similar to MPI (e.g. shmem_get())

  Available for C / Fortran

  Used for programs that
  perform computations in separate address spaces and
  explicitly pass data to and from different processes in the program.

  The processes participating in shared memory applications are
referred to as processing elements (PEs).

  Shmem routines supply remote data transfer, work-shared broadcast
and reduction, barrier synchronization, and atomic memory
operations.

  Symmetric Variables
  Arrays or variables that exist with the same size, type, and relative address on all PEs.
  Data allocated and managed by shmem
  C

  Non-stack variables
  Global
  Local static

  Fortran
  Variables in common blocks
  Variables with the SAVE attribute

  Cray SHMEM

  SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D
  Platforms: Cray T3D, T3E, PVP, XT series

  SGI SHMEM
  SGI bought CRI and SHMEM was incorporated in SGI’s Message Passing Toolkit (MPT)
  Owns the “rights” for SHMEM
  Platform support: SGI Irix, Origin, Altix
  SGI was bought by Rackable Systems in May 2009

  Quadrics SHMEM (company out of business)
  Optimized API for QsNet
  PSHMEM support available via joint effort from HCS Lab & Quadrics
  Platform: Linux cluster with QsNet interconnect

  Others
  HP SHMEM, IBM SHMEM (used internally only)
  GPSHMEM (cluster with ARMCI & MPI support, dead)

Note: SHMEM is not defined by any one standard.

History and Implementations

 SHMEM Routines
  Data transfers

  One sided puts and gets

  Synchronization mechanisms
  Barrier, Fence, quiet

  Collective communication
  Broadcast, Collection, Reduction

  Atomic Memory Operations
  Provide mechanisms to implement mutual exclusion
  Swap, Add, Increment

  Address Manipulation, Data Cache control and Locks
  Not supported by all SHMEM implementations

Getting Started
  Initialization

  Include header shmem.h to access the library
  E.g. #include <shmem.h> , #include <mpp/shmem.h>

  start_pes, shmem_init: Initializes the caller and then synchronizes the caller with the other
processes.

  my_pe: Get the PE ID of local processor
  num_pes: Get the total number of PEs in the system

SGI Quadrics Cray

Fortran C/C++ C/C++ Fortran C/C++

start_pes start_pes(0) shmem_init start_pes start_pes

shmem_init shmem_init

shmem_my_pe shmem_my_pe shmem_my_pe shmem_my_pe

shmem_n_pes shmem_n_pes shmem_n_pes shmem_n_pes

NUM_PES _num_pes num_pes NUM_PES

MY_PE _my_pe my_pe

Implementation Comparison

#include <stdio.h>

#include <mpp/shmem.h>

int main(void)

{

 int me, npes;

 start_pes(0);

 npes = _num_pes();

 me = _my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

#include <stdio.h>

#include <shmem.h>

int main(void)

{

 int me, npes;

 shmem_init();

 npes = num_pes();

 me = my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

Hello World (SGI on Altix) Hello World (SiCortex)

Implementation Differences

Hello World on SGI on Altix Hello World on SiCortex

Closer Look
Data Transfer (1)

 Put
 Single variable

  void shmem_TYPE_p(TYPE *addr, TYPE value, int pe)
  TYPE = double, float, int, long, short

 Contiguous object
  void shmem_put(void *target, const void *source, size_t len, int pe)
  void shmem_TYPE_put(TYPE *target, const TYPE*source, size_t len, int pe)

  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

  void shmem_putSS(void *target, const void *source, size_t len, int pe)
  Storage Size (SS, bits) = 32, 64,128, mem (any size)

Data Transfer (2)

 Get
 Single variable

  void shmem_TYPE_g(TYPE *addr, TYPE value, int pe)
  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

 Contiguous object
  void shmem_get(void *target, const void *source, size_t len, int pe)
  void shmem_TYPE_get(TYPE *target, const TYPE*source, size_t len,

int pe)
  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

  void shmem_getSS(void *target, const void *source, size_t len, int
pe)

  Storage Size (SS, bits) = 32, 64,128, mem (any size)

Synchronization (1)

  Barrier (Group synchronization)
  pSync is a symmetric work array used to prevent overlapping collective

communication
  void shmem_barrier_all()

  Suspend all operations until all PEs call this function
  void shmem_barrier(int PE_start, int PE_stride, int PE_size, long *pSync)

  Barrier operation on subset of PEs

  Conditional wait (P2P synchronization)
  Generic conditional wait

  Suspend until local shared variable NOT equal to the value specified
  void shmem_wait(long *var, long value)
  void shmem_TYPE_wait(TYPE *var, TYPE value)

  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

Synchronization (2)

  Specific conditional wait
  Similar to the generic wait except the comparison can now be >=, >, =, !=, <,

<=
  void shmem_wait_until(long *var, int cond, long value)
  void shmem_TYPE_wait_until(TYPE *var, int cond, TYPE value)

  TYPE = int, long, longlong, short

  Fence (data transfer sync.)
  Ensures ordering of outgoing write (put) operations to a single PE
  void shmem_fence()

  Quiet (data transfer sync.)
  Waits for completion of all outstanding remote writes initiated from the calling PE (on some

implementations; fence = quiet)

  void shmem_quiet()

Collective Communication (1)

  Broadcast
  One-to-all communication
  void shmem_broadcast(void

*target, void *source, int nlong,
int PE_root, int PE_start, int
PE_stride, int PE_size, long
*pSync)

  void shmem_broadcastSS(void
*target, void *source, int nlong,
int PE_root, int PE_start, int
PE_stride, int PE_size, long
*pSync)

Collective Communication (2)

  Collection
  Concatenates blocks of data from multiple PEs to an array in every PE
  void shmem_collect(void *target, void *source, int nlong, int PE_start, int

PE_stride, int PE_size, long *pSync)
  void shmem_collectSS(void *target, void *source, int nlong, int PE_start, int

PE_stride, int PE_size, long *pSync)

  Reductions
  Logical, Statistical and Arithmetic

  void shmem_TYPE_OP_to_all(TYPE *target, TYPE *source, int nreduce, int
PE_start, int PE_stride, int PE_size, TYPE *pWrk, long *pSync)

  Logical OP = and, or, xor, Statistical OP = max, min, Arithmetic OP =
product, sum

  TYPE = int, long, longlong, short

Storage Size (SS, bits) = 32, 64 (default)

Atomic Operations

  Atomic Swap
  Unconditional

  long shmem_swap(long *target, long value, int pe)

  TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)

  TYPE = double, float, int, long, longlong, short

  Conditional

  TYPE shmem_TYPE_cswap(TYPE *target, int cond, TYPE value, int pe)
  TYPE = int, long, longlong, short

  Arithmetic
  TYPE shmem_TYPE_OP(TYPE *target, TYPE value, int pe)

  OP = fadd, finc

  TYPE = int, long, longlong, short

Addresses & Cache

  Address manipulation
  shmem_ptr - Returns a pointer to a data object on a remote PE

  Cache control
  shmem_clear_cache_inv - Disables automatic cache coherency mode

  shmem_set_cache_inv - Enables automatic cache coherency mode

  shmem_set_cache_line_inv - Enables automatic line cache coherency
mode

  shmem_udcflush - Makes the entire user data cache coherent

  shmem_udcflush_line - Makes coherent a cache line

Performance – Bandwidth

Performance – Speedups

On SGI Origin 2000

Conclusions

  Pros
  Simpler one-sided style of communication
  Can take advantage of high performance interconnects

  low latency
  hardware assist; e.g. rDMA, collective support, remote CPU not interrupted during transfers

  Cons
  Not standardized

  Different implementation have different APIs
  Effort underway to develop a standardization.

Summary and Related Work

  Library for C and Fortran
programs

  Provides calls for data transfer,
collective operations,
synchronization and atomic
operations

  Requires explicit put/get calls to
communicate using symmetric
data

  Language extension for ANSI C

  Provides extensions for declaring
global shared variables,
communicating global shared
variables, synchronization and
work sharing

  No syntactic difference between
accesses to a shared and
accesses to a private variable

SHMEM UPC

Summary and Related Work

  Related & Future Work

  Compiler side
  Develop SHMEM-aware compilers

and tools to analyze source code

  E.g. code-motion to provide better
communication/computation
overlaps, transfer coalescing…

  Runtime

  Error detection, recovery

  Related Work, e.g. from Iowa
State:

  Compiler side
  Evaluating Error Detection

Capabilities of UPC Compilers

  Runtime
  Error detection, recovery

References

1.  Hongzhang Shan and Jaswinder Pal Singh, A Comparison of MPI, SHMEM and Cache-coherent Shared
Address Space Programming Models on the SGI Origin2000

2.  SHMEM tutorial by Hung-Hsun Su, HCS Research Laboratory,University of Florida

3.  Evaluating Error Detection Capabilities of UPC Compilers and Runtime Error detection by Iowa Sate
University http://hpcgroup.public.iastate.edu/CTED/

4.  Quadrics SHMEM Programming Manual http://www.psc.edu/~oneal/compaq/ShmemMan.pdf

5.  Glenn Leucke et. al., The Performance and Scalability of SHMEM and MPI-2 One-Sided Routines on a SCI
Origin 2000 and a Cray T3E-600 http://dsg.port.ac.uk/Journals/PEMCS/papers/paper19.pdf

6.  Patrick H. Worley, CCSM Component Performance Benchmarking and Status of the CRAY X1 at ORNL
http://www.csm.ornl.gov/~worley/talks/index.html

7.  Karl Feind, Shared Memory Access (SHMEM) Routines

8.  Galen M. Shipman and Stephen W. Poole, Open-SHMEM: Towards a Unified RMA Model

Thanks for reading!

