SHMEM TUTORIAL

Presenters: Swaroop Pophale and Tony Curtis

University of Houston, Texas




Outline

Background

History and Implementations
SHMEM routines

Getting started

v Code Example

v Closer look
Performance
Conclusions

References



Background
What is SHMEM?

SHared MEMory library (SPMD model)
Library of functions similar to MPI (e.g. shmem_get())

Available for C / Fortran

Used for programs that
perform computations in separate address spaces and
explicitly pass data to and from different processes in the program.

The processes participating in shared memory applications are
referred to as processing elements (PEs).

Shmem routines supply remote data transfer, work-shared broadcast
and reduction, barrier synchronization, and atomic memory
operations.



Symmetric Variables
Arrays or variables that exist with the same size, type, and relative address on all PEs.
Data allocated and managed by shmem

C SAME
ADDRESS

Non-stack variables
Global Remotely

Accessible

Memory

Remotely
Accessible
Memory

Local static

Fortran

Variables in common blocks
Variables with the SAVE attribute

Private Private
Memory Memory

PE O PE 1



History and Implementations

Cray SHMEM

SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D
Platforms: Cray T3D, T3E, PVP, XT series
SGI SHMEM
SGI bought CRI and SHMEM was incorporated in SGI's Message Passing Toolkit (MPT)
Owns the “rights” for SHMEM
Platform support: SGI Irix, Origin, Altix
SGI was bought by Rackable Systems in May 2009
Quadrics SHMEM (company out of business)
Optimized API for QsNet
PSHMEM support available via joint effort from HCS Lab & Quadrics
Platform: Linux cluster with QsNet interconnect
Others
HP SHMEM, IBM SHMEM (used internally only)
GPSHMEM (cluster with ARMCI & MPI support, dead)

Note: SHMEM is not defined by any one standard.



SHMEM Routines
]

O

O

O

O

O

Data transfers
o One sided puts and gets

Synchronization mechanisms
o Barrier, Fence, quiet

Collective communication
1 Broadcast, Collection, Reduction

Atomic Memory Operations
o Provide mechanisms to implement mutual exclusion
o Swap, Add, Increment

Address Manipulation, Data Cache control and Locks
1 Not supported by all SHMEM implementations



Getting Started

Initialization
Include header shmem.h to access the library
E.g. #include <shmem.h> , #include <mpp/shmem.h>

start_pes, shmem_init: Initializes the caller and then synchronizes the caller with the other
processes.

my_pe: Get the PE ID of local processor

num_pes: Get the total number of PEs in the system

SGl Quadrics Cray

Fortran C/C++ C/C++ Fortran C/C++

start_pes start_pes(0) shmem_init start_pes start_pes
shmem_init shmem_init

shmem_my_pe shmem_my_ pe shmem_my_ pe shmem_my_pe
shmem_n_pes shmem_n_pes shmem_n_pes shmem_n_pes
NUM_PES num pes num_pes NUM_PES
MY _PE my pe my_pe




Implementation Comparison
T

Hello World (SGI on Altix) Hello World (SiCortex)

#include <stdio.h> #include <stdio.h>
#include <mpp/shmem.h> #include <shmem.h>
int main(void) int main(void)
{ {
int me, npes; int me, npes;
start_pes(0); shmem_init();
npes = _num_pes(); npes = num_pes();
me = _my_pe(); me = my_pe();
printf("Hello from %d of %d\n", me, npes); printf("Hello from %d of %d\n", me, npes);
return O; return O;



Implementation Differences
T

Hello World on SGI on Altix Hello World on SiCortex

#include <stdio.h> #include <stdio.h>
#include <mpp/shmem.h> #include <shmem.h>
int main(void) int main(void)
{ {
int me, npes; int me, npes;
start_pes(0); shmem_init();
npes=_num_pes(); npes=num_pes();
me=_my_pe(); me = my_pe();
printf("Hello from %d of %d\n", me, npes); printf("Hello from %d of %d\n", me, npes);
return0; return 0;



Closer Look
Data Transfer (1)

1 Put

Single variable

m void shmem_TYPE_p(TYPE *addr, TYPE value, int pe)
TYPE = double, float, int, long, short

Contiguous object

m void shmem_put(void *target, const void *source, size_t len, int pe)

m void shmem_TYPE_put(TYPE *target, const TYPE*source, size_t len, int pe)
For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical

m void shmem_putSS(void *target, const void *source, size_t len, int pe)

Storage Size (SS, bits) = 32, 64,128, mem (any size)



Data Transfer (2)

1 Get

Single variable

m void shmem_TYPE_g(TYPE *addr, TYPE value, int pe)
For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical

Contiguous object

m void shmem_get(void *target, const void *source, size_t len, int pe)
m void shmem_TYPE_get(TYPE *target, const TYPE*source, size t len,
int pe)
For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical
O vo;d shmem_getSS(void *target, const void *source, size_t len, int
pe
Storage Size (SS, bits) = 32, 64,128, mem (any size)



Synchronization (1)

=1 Barrier (Group synchronization)

pSync is a symmetric work array used to prevent overlapping collective
communication

void shmem_barrier_all()

m Suspend all operations until all PEs call this function

void shmem_barrier(int PE_start, int PE_stride, int PE_size, long *pSync)
® Barrier operation on subset of PEs

o1 Conditional wait (P2P synchronization)
Generic conditional wait
m Suspend until local shared variable NOT equal to the value specified
m void shmem_wait(long *var, long value)
m void shmem_TYPE_wait(TYPE *var, TYPE value)
For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical



Synchronization (2)

Specific conditional wait

m Similar to the generic wait except the comparison can now be >=, >, =, 1=, <,
<=

m void shmem_wait_until(long *var, int cond, long value)
m void shmem_TYPE_wait_until(TYPE *var, int cond, TYPE value)
TYPE = int, long, longlong, short

1 Fence (data transfer sync.)
Ensures ordering of outgoing write (put) operations to a single PE

void shmem_fence()

0 Quiet (data transfer sync.)

Waits for completion of all outstanding remote writes initiated from the calling PE (on some
implementations; fence = quiet)

void shmem_quiet()



Collective Communication (1)

1 Broadcast

1 One-to-all communication

O void shmem_broadcast(void
*target, void *source, int nlong,
int PE_root, int PE_start, int
PE_stride, int PE_size, long
*pSync)

O void shmem_broadcastSS(void
*target, void *source, int nlong,
int PE_root, int PE_start, int
PE_stride, int PE_size, long
*pSync)

Remotely
Accessible
Memory

Private
Memory

PE1

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Remotely
Accessible
Memory

Private
Memory

PE3

{

intme, npes;

stort_pes(0);
npes=_num_pes{;
me=_my_pef;

for =0, < _SHNEN_BCAST_SYNC_SIE; 44){
Sy = _SHMEM_SYNC_VALLE
}

/¥ WaitforallPEs o nfialize pSync ¥/
shmem_barrier [}

‘m_brmdcwé-t(x, %1,0,0,0,npes, pSync)

Remotely
Accessible
Memory

Private
Memory

PE(N-1)



Collective Communication (2)
T

Storage Size (SS, bits) = 32, 64 (default)

1 Collection

o1 Concatenates blocks of data from multiple PEs to an array in every PE
O void shmem_collect(void *target, void *source, int nlong, int PE_start, int
PE_stride, int PE_size, long *pSync)

O void shmem_collectSS(void *target, void *source, int nlong, int PE_start, int
PE_stride, int PE_size, long *pSync)

1 Reductions

o Logical, Statistical and Arithmetic

m void shmem_TYPE_OP_to_all(TYPE *target, TYPE *source, int nreduce, int
PE_start, int PE_stride, int PE_size, TYPE *pWrk, long *pSync)
w Logical OP = and, or, xor, Statistical OP = max, min, Arithmetic OP =
product, sum
=m TYPE = int, long, longlong, short



Atomic Operations
I

1 Atomic Swap

= Unconditional
m long shmem_swap(long *target, long value, int pe)
B TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)
m TYPE = double, float, int, long, longlong, short
1 Conditional
B TYPE shmem_TYPE_cswap(TYPE *target, int cond, TYPE value, int pe)
@ TYPE = int, long, longlong, short

01 Arithmetic
O TYPE shmem_TYPE_OP(TYPE *target, TYPE value, int pe)
m OP = fadd, finc
m TYPE = int, long, longlong, short



Addresses & Cache

Address manipulation

- Returns a pointer to a data object on a remote PE

Cache control
- Disables automatic cache coherency mode
- Enables automatic cache coherency mode

- Enables automatic line cache coherency
mode

- Makes the entire user data cache coherent

- Makes coherent a cache line



Performance — Bandwidth

Communication 0-1 Bandwidth on the Cray X1

100000 |
— 10000 | “M 7 el ME— .
‘S : / _
o
8 i ]
@ 1000 | : |
Q L _
o
& L
= 100 |
o L
Q
<
@ i
E 10 |
g [
= ' SHMEM SWAP —— -
T of SHMEM ECHO —w—
| MPI SWAP —a— |
01 | MPI ECHO —=—

1 10 100 1000 10000 100000 1e+06 1e+07
Amount of Data Sent Each Direction



Performance — Speedups
]

OCEAN Specdup =

—— S INE N e (O S5 Eed NE*I

oA

an
i;»?
16 4 e
-
T
o
16 B2 o9 16 B o 16 B2 o9 16 52 o4 number of processors
258 514 1026 2050

problem size

On SGI Origin 2000



Conclusions

Simpler one-sided style of communication

Can take advantage of high performance interconnects
low latency
hardware assist; e.g. rDMA, collective support, remote CPU not interrupted during transfers

Not standardized

Different implementation have different APIs
Effort underway to develop a standardization.



Summary and Related Work

Library for C and Fortran
programs

Provides calls for data transfer,
collective operations,
synchronization and atomic
operations

Requires explicit put/get calls to
communicate using symmetric
data

Language extension for ANSI C

Provides extensions for declaring
global shared variables,
communicating global shared
variables, synchronization and
work sharing

No syntactic difference between
accesses to a shared and
accesses to a private variable



Summary and Related Work
I

1 Related & Future Work 1 Related Work, e.g. from lowa
1 Compiler side State:
u Develop SHMEM-aware compilers o1 Compiler side
and tools to analyze source code = Evaluating Error Detection
m E.g. code-motion to provide better Capabilities of UPC Compilers
communication /computation o Runtime

overlaps, transfer coalescing...

) ®m Error detection, recover
7 Runtime ! 4

w Error detection, recovery



References

1. Hongzhang Shan and Jaswinder Pal Singh, A Comparison of MPI, SHMEM and Cache-coherent Shared
Address Space Programming Models on the SGI Origin2000

2. SHMEM tutorial by Hung-Hsun Su, HCS Research Laboratory,University of Florida

Evaluating Error Detection Capabilities of UPC Compilers and Runtime Error detection by lowa Sate
University

4. Quadrics SHMEM Programming Manual

5. Glenn Leucke et. al., The Performance and Scalability of SHMEM and MPI-2 One-Sided Routines on a SCI
Origin 2000 and a Cray T3E-600

6. Patrick H. Worley, CCSM Component Performance Benchmarking and Status of the CRAY X1 at ORNL

7. Karl Feind, Shared Memory Access (SHMEM) Routines

8. Galen M. Shipman and Stephen W. Poole, Open-SHMEM: Towards a Unified RMA Model



Thanks for reading!



