
SHMEM TUTORIAL

Presenters: Swaroop Pophale and Tony Curtis

University of Houston, Texas

Outline

  Background
  History and Implementations
  SHMEM routines
  Getting started

  Code Example
  Closer look

  Performance
  Conclusions
  References

Background
What is SHMEM?

  SHared MEMory library (SPMD model)
  Library of functions similar to MPI (e.g. shmem_get())

  Available for C / Fortran

  Used for programs that
  perform computations in separate address spaces and
  explicitly pass data to and from different processes in the program.

  The processes participating in shared memory applications are
referred to as processing elements (PEs).

  Shmem routines supply remote data transfer, work-shared broadcast
and reduction, barrier synchronization, and atomic memory
operations.

  Symmetric Variables
  Arrays or variables that exist with the same size, type, and relative address on all PEs.
  Data allocated and managed by shmem
  C

  Non-stack variables
  Global
  Local static

  Fortran
  Variables in common blocks
  Variables with the SAVE attribute

  Cray SHMEM

  SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D
  Platforms: Cray T3D, T3E, PVP, XT series

  SGI SHMEM
  SGI bought CRI and SHMEM was incorporated in SGI’s Message Passing Toolkit (MPT)
  Owns the “rights” for SHMEM
  Platform support: SGI Irix, Origin, Altix
  SGI was bought by Rackable Systems in May 2009

  Quadrics SHMEM (company out of business)
  Optimized API for QsNet
  PSHMEM support available via joint effort from HCS Lab & Quadrics
  Platform: Linux cluster with QsNet interconnect

  Others
  HP SHMEM, IBM SHMEM (used internally only)
  GPSHMEM (cluster with ARMCI & MPI support, dead)

Note: SHMEM is not defined by any one standard.

History and Implementations

 SHMEM Routines
  Data transfers

  One sided puts and gets

  Synchronization mechanisms
  Barrier, Fence, quiet

  Collective communication
  Broadcast, Collection, Reduction

  Atomic Memory Operations
  Provide mechanisms to implement mutual exclusion
  Swap, Add, Increment

  Address Manipulation, Data Cache control and Locks
  Not supported by all SHMEM implementations

Getting Started
  Initialization

  Include header shmem.h to access the library
  E.g. #include <shmem.h> , #include <mpp/shmem.h>

  start_pes, shmem_init: Initializes the caller and then synchronizes the caller with the other
processes.

  my_pe: Get the PE ID of local processor
  num_pes: Get the total number of PEs in the system

SGI Quadrics Cray

Fortran C/C++ C/C++ Fortran C/C++

start_pes start_pes(0) shmem_init start_pes start_pes

shmem_init shmem_init

shmem_my_pe shmem_my_pe shmem_my_pe shmem_my_pe

shmem_n_pes shmem_n_pes shmem_n_pes shmem_n_pes

NUM_PES _num_pes num_pes NUM_PES

MY_PE _my_pe my_pe

Implementation Comparison

#include <stdio.h>

#include <mpp/shmem.h>

int main(void)

{

 int me, npes;

 start_pes(0);

 npes = _num_pes();

 me = _my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

#include <stdio.h>

#include <shmem.h>

int main(void)

{

 int me, npes;

 shmem_init();

 npes = num_pes();

 me = my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

Hello World (SGI on Altix) Hello World (SiCortex)

Implementation Differences

Hello World on SGI on Altix Hello World on SiCortex

Closer Look
Data Transfer (1)

 Put
 Single variable

  void shmem_TYPE_p(TYPE *addr, TYPE value, int pe)
  TYPE = double, float, int, long, short

 Contiguous object
  void shmem_put(void *target, const void *source, size_t len, int pe)
  void shmem_TYPE_put(TYPE *target, const TYPE*source, size_t len, int pe)

  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

  void shmem_putSS(void *target, const void *source, size_t len, int pe)
  Storage Size (SS, bits) = 32, 64,128, mem (any size)

Data Transfer (2)

 Get
 Single variable

  void shmem_TYPE_g(TYPE *addr, TYPE value, int pe)
  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

 Contiguous object
  void shmem_get(void *target, const void *source, size_t len, int pe)
  void shmem_TYPE_get(TYPE *target, const TYPE*source, size_t len,

int pe)
  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

  void shmem_getSS(void *target, const void *source, size_t len, int
pe)

  Storage Size (SS, bits) = 32, 64,128, mem (any size)

Synchronization (1)

  Barrier (Group synchronization)
  pSync is a symmetric work array used to prevent overlapping collective

communication
  void shmem_barrier_all()

  Suspend all operations until all PEs call this function
  void shmem_barrier(int PE_start, int PE_stride, int PE_size, long *pSync)

  Barrier operation on subset of PEs

  Conditional wait (P2P synchronization)
  Generic conditional wait

  Suspend until local shared variable NOT equal to the value specified
  void shmem_wait(long *var, long value)
  void shmem_TYPE_wait(TYPE *var, TYPE value)

  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

Synchronization (2)

  Specific conditional wait
  Similar to the generic wait except the comparison can now be >=, >, =, !=, <,

<=
  void shmem_wait_until(long *var, int cond, long value)
  void shmem_TYPE_wait_until(TYPE *var, int cond, TYPE value)

  TYPE = int, long, longlong, short

  Fence (data transfer sync.)
  Ensures ordering of outgoing write (put) operations to a single PE
  void shmem_fence()

  Quiet (data transfer sync.)
  Waits for completion of all outstanding remote writes initiated from the calling PE (on some

implementations; fence = quiet)

  void shmem_quiet()

Collective Communication (1)

  Broadcast
  One-to-all communication
  void shmem_broadcast(void

*target, void *source, int nlong,
int PE_root, int PE_start, int
PE_stride, int PE_size, long
*pSync)

  void shmem_broadcastSS(void
*target, void *source, int nlong,
int PE_root, int PE_start, int
PE_stride, int PE_size, long
*pSync)

Collective Communication (2)

  Collection
  Concatenates blocks of data from multiple PEs to an array in every PE
  void shmem_collect(void *target, void *source, int nlong, int PE_start, int

PE_stride, int PE_size, long *pSync)
  void shmem_collectSS(void *target, void *source, int nlong, int PE_start, int

PE_stride, int PE_size, long *pSync)

  Reductions
  Logical, Statistical and Arithmetic

  void shmem_TYPE_OP_to_all(TYPE *target, TYPE *source, int nreduce, int
PE_start, int PE_stride, int PE_size, TYPE *pWrk, long *pSync)

  Logical OP = and, or, xor, Statistical OP = max, min, Arithmetic OP =
product, sum

  TYPE = int, long, longlong, short

Storage Size (SS, bits) = 32, 64 (default)

Atomic Operations

  Atomic Swap
  Unconditional

  long shmem_swap(long *target, long value, int pe)

  TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)

  TYPE = double, float, int, long, longlong, short

  Conditional

  TYPE shmem_TYPE_cswap(TYPE *target, int cond, TYPE value, int pe)
  TYPE = int, long, longlong, short

  Arithmetic
  TYPE shmem_TYPE_OP(TYPE *target, TYPE value, int pe)

  OP = fadd, finc

  TYPE = int, long, longlong, short

Addresses & Cache

  Address manipulation
  shmem_ptr - Returns a pointer to a data object on a remote PE

  Cache control
  shmem_clear_cache_inv - Disables automatic cache coherency mode

  shmem_set_cache_inv - Enables automatic cache coherency mode

  shmem_set_cache_line_inv - Enables automatic line cache coherency
mode

  shmem_udcflush - Makes the entire user data cache coherent

  shmem_udcflush_line - Makes coherent a cache line

Performance – Bandwidth

Performance – Speedups

On SGI Origin 2000

Conclusions

  Pros
  Simpler one-sided style of communication
  Can take advantage of high performance interconnects

  low latency
  hardware assist; e.g. rDMA, collective support, remote CPU not interrupted during transfers

  Cons
  Not standardized

  Different implementation have different APIs
  Effort underway to develop a standardization.

Summary and Related Work

  Library for C and Fortran
programs

  Provides calls for data transfer,
collective operations,
synchronization and atomic
operations

  Requires explicit put/get calls to
communicate using symmetric
data

  Language extension for ANSI C

  Provides extensions for declaring
global shared variables,
communicating global shared
variables, synchronization and
work sharing

  No syntactic difference between
accesses to a shared and
accesses to a private variable

SHMEM UPC

Summary and Related Work

  Related & Future Work

  Compiler side
  Develop SHMEM-aware compilers

and tools to analyze source code

  E.g. code-motion to provide better
communication/computation
overlaps, transfer coalescing…

  Runtime

  Error detection, recovery

  Related Work, e.g. from Iowa
State:

  Compiler side
  Evaluating Error Detection

Capabilities of UPC Compilers

  Runtime
  Error detection, recovery

References

1.  Hongzhang Shan and Jaswinder Pal Singh, A Comparison of MPI, SHMEM and Cache-coherent Shared
Address Space Programming Models on the SGI Origin2000

2.  SHMEM tutorial by Hung-Hsun Su, HCS Research Laboratory,University of Florida

3.  Evaluating Error Detection Capabilities of UPC Compilers and Runtime Error detection by Iowa Sate
University http://hpcgroup.public.iastate.edu/CTED/

4.  Quadrics SHMEM Programming Manual http://www.psc.edu/~oneal/compaq/ShmemMan.pdf

5.  Glenn Leucke et. al., The Performance and Scalability of SHMEM and MPI-2 One-Sided Routines on a SCI
Origin 2000 and a Cray T3E-600 http://dsg.port.ac.uk/Journals/PEMCS/papers/paper19.pdf

6.  Patrick H. Worley, CCSM Component Performance Benchmarking and Status of the CRAY X1 at ORNL
http://www.csm.ornl.gov/~worley/talks/index.html

7.  Karl Feind, Shared Memory Access (SHMEM) Routines

8.  Galen M. Shipman and Stephen W. Poole, Open-SHMEM: Towards a Unified RMA Model

Thanks for reading!

