Oak Ridge National Laboratory Computing and Computational Sciences

UCCS

RIDGE

A Circuit-Switched Testbed for DOE's Next-Gen Network

UltraScience Net

Universal Common Communication Substrate

Presented by: Pavel Shamis

November, 2012

unnyvale

CalTech Dual 10Gbs SONET Backbo MPLS (Via ESnet) Access Links Switching Hubs Storage or Other Res.

Outline

- Motivation
- UCCS
- Goals & Requirements
- Status

Motivation

- Upper-Level Protocols (ULP) provides a wide degree of variation in communication
- Network Hardware exposes a range of different capabilities and interfaces

Motivation – Cont'd

- Low-level Network Interfaces are complicated
 - Tens of thousands code lines
 - Several years to implement/ debug/optimize full communication stack from scratch
 - High performance implementation requires hardware vendor level of expertise

Motivation – Cont'd

- Multiple ULPs work hard to Reimplement low-level communication layer
- High performance communication support is required over a range of network hardware !
- "Implement it on top of MPI"
 - Good for prototypes
 - Performance penalty

Is there any hope ?

- ULPs
 - For a carefully chosen division of the communication stack, ULPs can have a high degree of overlap in the requirements they place on the lower level layers
- Low-level Network Interfaces
 - Communication interface can have a high degree of overlap in communication semantics
 - Send/Recv, RDMA, AMO, Collectives, etc.

UCCS

- Universal Common Communication Substrate (UCCS)
 - High performance communication middleware for parallel programing models, File I/O, and BigData

Goals

 Provide scalable high-performance communication capabilities while supporting multiple programming models and network hardware technologies

Goals – Cont'd

- Reduce the development cycle barriers for new ULPs and programming models by providing a broader, more flexible network abstraction
- Reduce the application/programming barriers for new networks, by providing a stable pmodel/user layer which can use any UCCSsupporting network

Goals – Cont'd

- Support a range of programming models
 - PGAS (OpenSHMEM, UPC, Chapel, X10, etc.)
 - MPI
 - I/O (SPIL)
 - Multi Dimensional Hashed Indexed Metadata (MDHIM)
 - Language extensions
 - BigData
 - Business Analytics

Goals – Cont'd

- If possible, leverage existing community project (s)
- Allow for long term support
- Scale to ten's of thousands of nodes
- Assume >= 10 year lifespan
- Allow for I/O, Libraries, Language enhancements

Low-level Communication Library Support Requirements

 Capable of simultaneous support for multiple ULP's

 Simultaneous use of different hardware communication stacks (enabling technology)

Low-Level Communication Library Support Requirements

- Low S/W overheads in "critical path"
 - RMA, AMO, collectives
 - Modern network devices demonstrate sub-micro latencies, making the software overhead more dominant.
- Flexible and extendable interface
 - Hardware "friendly" requirements

Long Term Goals

- Direct network hardware
 support
- Co-design
 - Hardware
 - Compilers
- Community support

OpenSHMEM & UCCS

- Strong support for PGAS models like OpenSHMEM (but not only!)
- Very short critical path
 - Tight integration with hardware
- Maximum hardware utilization

Status

- UCCS Specification v0.1
- Implementation
 - Based on the Module Component Architecture (MCA) and Open MPI network layer (Not MPI!)
 - Extended for PGAS/IO/…
- We are open for collaboration !

Early Results

- Infiniband Connext-X rev1 / Perftest
- PUT:
 - Typical ULP overheads: ~150-800 nsec (above VERBS)
 - UCCS : ~32 nsec <u>Faster</u> than native VERBS!
- GET:
 - Typical ULP overheads: ~250-800 nsec (above VERBS)
 - UCCS: ~10 nsec (above VERBS)

Acknowledgements

This work was supported by the United States Department of Defense & used resources of the Extreme Scale Systems Center at Oak Ridge National Laboratory.

