UCCS
Universal Common Communication Substrate

Presented by:
Pavel Shamis

November, 2012
Outline

• Motivation
• UCCS
• Goals & Requirements
• Status
Motivation

- Upper-Level Protocols (ULP) provides a wide degree of variation in communication
- Network Hardware exposes a range of different capabilities and interfaces
Motivation – Cont’d

• Low-level Network Interfaces are complicated
 – Tens of thousands code lines
 – Several years to implement/ debug/optimize full communication stack from scratch
 – High performance implementation requires hardware vendor level of expertise
Motivation – Cont’d

- Multiple ULPs work hard to Re-implement low-level communication layer
- High performance communication support is required over a range of network hardware!
- “Implement it on top of MPI”
 - Good for prototypes
 - Performance penalty
Is there any hope?

- **ULPs**
 - For a carefully chosen division of the communication stack, ULPs can have a high degree of overlap in the requirements they place on the lower level layers.

- **Low-level Network Interfaces**
 - Communication interface can have a high degree of overlap in communication semantics:
 - Send/Recv, RDMA, AMO, Collectives, etc.
• Universal Common Communication Substrate (UCCS)
 – High performance communication middleware for parallel programming models, File I/O, and BigData
Goals

- Provide scalable high-performance communication capabilities while supporting multiple programming models and network hardware technologies
Goals – Cont’d

• Reduce the development cycle barriers for new ULPs and programming models by providing a broader, more flexible network abstraction

• Reduce the application/programming barriers for new networks, by providing a stable p-model/user layer which can use any UCCS-supporting network
Goals – Cont’d

• Support a range of programming models
 – PGAS (OpenSHMEM, UPC, Chapel, X10, etc.)
 – MPI
 – I/O (SPIL)
 – Multi Dimensional Hashed Indexed Metadata (MDHIM)
 – Language extensions
 – BigData
 – Business Analytics
Goals – Cont’d

• If possible, leverage existing community project (s)
• Allow for long term support
• Scale to ten’s of thousands of nodes
• Assume >= 10 year lifespan
• Allow for I/O, Libraries, Language enhancements
Low-level Communication Library
Support Requirements

• Capable of simultaneous support for multiple ULP’s

• Simultaneous use of different hardware communication stacks (enabling technology)
Low-Level Communication Library
Support Requirements

• Low S/W overheads in “critical path”
 – RMA, AMO, collectives
 – Modern network devices demonstrate sub-micro latencies, making the software overhead more dominant.

• Flexible and extendable interface
 – Hardware “friendly” requirements
Long Term Goals

• Direct network hardware support

• Co-design
 – Hardware
 – Compilers

• Community support
OpenSHMEM & UCCS

- Strong support for PGAS models like OpenSHMEM (but not only!)
- Very short critical path
 - Tight integration with hardware
- Maximum hardware utilization
Status

• UCCS Specification v0.1

• Implementation
 – Based on the Module Component Architecture (MCA) and Open MPI network layer (Not MPI!)
 – Extended for PGAS/IO/…

• We are open for collaboration!
Early Results

- Infiniband Connext-X rev1 / Perftest

PUT:
- Typical ULP overheads: ~150-800 nsec (above VERBS)
- UCCS: ~32 nsec **Faster** than native VERBS!

GET:
- Typical ULP overheads: ~250-800 nsec (above VERBS)
- UCCS: ~10 nsec (above VERBS)
Acknowledgements

This work was supported by the United States Department of Defense & used resources of the Extreme Scale Systems Center at Oak Ridge National Laboratory.