SC11

INTRODUCING OPENSHMEM

Barbara Chapman, Tony Curtis, **Swaroop Pophale** University of Houston; Jeffery Kuehn, Oak Ridge National Laboratory; Stephen Poole, Oak Ridge National Laboratory and OSSS, Inc.; Lauren Smith, OSSS, Inc. & DOD

Introducing OpenSHMEM Outline

- Structure of the Talk
 - Overview of PGAS and SHMEM
 - Features
 - A brief history
 - Defining OpenSHMEM
 - Standardization issues
 - Implementation work
 - Community building

Introducing OpenSHMEM PGAS and SHMEM

- MPI became de facto standard library for distributed parallel computing
 - Message-passing, send + acknowledge

PGAS

- Processors with separate same-named variables
- Each processor sees the same name, but has a separate copy
- Partitioned Global Address Space
 - CAF, UPC, SHMEM

Introducing OpenSHMEM PGAS

Figure 1. Logical view of a PGAS Execution Model (UPC)

Introducing OpenSHMEM SHMEM

- 1-sided communication requires less overhead
 - Shoot first, ask questions later
 - SHMEM is such a library
 - Symmetric Hierarchical MEMory
- Introduction to SHMEM
 - C and Fortran interfaces
 - Variables can be allocated with global visibility
 - All processors see a named variable
 - Global Address Space

Introducing OpenSHMEM SHMEM Feature Set

- Point-to-point put & get
- Broadcast & collect
- Arithmetical and logical reductions
- Atomic operations
- Locks

Introducing OpenSHMEM One-sided communication

- One-sided communication allows one PE to access certain variables of another PE without interrupting the other PE
- SHMEM facilitates one-sided communication through SYMMETRIC variables
- There are two types of Symmetric Variables
 - Globals
 - Dynamically allocated and maintained by the SHMEM library

Introducing OpenSHMEM One-sided communication

2-sided communication with acknowledgement

1-sided communication without acknowledgement

Introducing OpenSHMEM One-sided communication

- Taking advantage of hardware for performance
 - Hardware offload frees other resources
 - Remote direct memory access
 - Processor can "put" directly to another processor's memory without interrupting
 - Atomic, collective, locking and barrier operations can also benefit
 - Can produce substantial performance gains

Introducing OpenSHMEM Symmetric Variables

- Communication in SHMEM
 - Symmetric variables
 - Accessible from remote processors (put/get)
 - Same name on all processors
 - At same relative address
 - But differing values
 - Fences and Barriers
 - To synchronize previous 1-sided communication

Introducing OpenSHMEM Symmetric Variables

- Arrays or variables that exist with the same size, type, and relative address on all PEs.
- The following kinds of data objects are symmetric:
 - Globals

C/C++: Non-stack variables,

Fortran: objects in common blocks or with the **SAVE** attribute

dynamically allocated

C/C++: shmalloc,

Fortran: shpalloc

Introducing OpenSHMEM Symmetric Variables

```
int main (void)
  int *x;
  start_pes(o);
  x = (int*) shmalloc(sizeof(x));
  shmem_barrier_all();
  shfree(x);
  return o;
```


Figure 2. Dynamic allocation of Symmetric Data

Introducing OpenSHMEM Symmetric Variables

Same offset, but at potentially different addresses

```
if (_my_pe() == 0) {
    shmem_int_put (dest = x, src = a, len = 1, pe = 1);
}
// has "a" arrived yet? We don't know...
```

Introducing OpenSHMEM History of SHMEM

- History
 - Cray SHMEM
 - SGISHMEM
 - Quadrics SHMEM
 - Others
 - HP SHMEM, IBM SHMEM (used internally only)
 - GPSHMEM
- OpenSHMEM

Open Source Software Solutions Inc.

Introducing OpenSHMEM Need for Standardization

- Standardization & community
 - Various versions of SHMEM diverged
 - Different APIs, usage restrictions
 - So code is not directly portable
 - Simple example:

SGI	Quadrics	SiCortex
start_pes(int npes)	start_pes(int npes) shmem_init(void)	start_pes(int npes) NO- OP shmem_init(void)

Introducing OpenSHMEM Need for Standardization

Here's "Hello World" again on an SGI Altix

```
#include <stdio.h>
int
main(int argc, char **argv)
  int me, npes;
  start_pes(0);
       = my pe();
  npes = num pes();
  printf("Hello from node %4d of %4d\n", me, npes);
  return 0;
```

Introducing OpenSHMEM Towards OpenSHMEM

- Standardization & community
 - Steve Poole founded "Open Source Software Solutions" (OSSS)
 - A home for OpenSHMEM
 - SGI transferred rights to SHMEM to OSSS
 - SGI has permanent chair
 - Form community to move forward and develop materials

Introducing OpenSHMEM Towards OpenSHMEM

- SGI version as a starting-point
 - SGI (Altix) implementation as reference
 - With editorial rewrites
 - OpenSHMEM Specification 1.0 (released!)
- Develop new specification as version 2.0
 - Solicit new ideas from community
 - What features should be changed/added?
- Reference implementations
 - New OpenSHMEM written by University of Houston
 - Baseline for future development
 - 1.0 version complete and moving towards 2.0

Introducing OpenSHMEM Reference Implementation

OpenSHMEM programmer

OpenSHMEM API

Internal Comms API

abstraction

Internal Symm. Memory API

GASNet / ARMCI / direct drivers...

Network Layer: IB, Quadrics, Myrinet, ...

University of Houston: Implementation Structure

Introducing OpenSHMEM V&V

- Validation & Verification
 - Build core tests of correctness
 - Created by University of Houston
 - And of performance
 - To compare implementations of collective algorithms
 - For tuning of underlying libraries/transports

Introducing OpenSHMEM Outreach and Participation

- OpenSHMEM web site (LIVE!)
 - http://www.openshmem.org/
 - Community Wiki
 - Documentation: FAQ, cheatsheet, specification
 - Training material / tutorials
 - Software downloads
 - Source code of OpenSHMEM versions
 - Validation and Verification Suite
 - Sample programs
- Conferences/workshops
 - PGAS10, SC10, ICS11, PGAS11, SC11
- Mailing list

Introducing OpenSHMEM At SC11

- HERE and NOW
 - SC11 (Seattle, November 12-18)
 - Birds of a Feather meeting
 - OpenSHMEM
 - Wednesday, November 16th, 5:30pm 7:00pm (TCC 203)
 - Current exhibition booth presence
 - PGAS (#124)
 - Oak Ridge National Laboratory (#1831)
 - Gulf Coast Academic Supercomputing (#3009)
 - SGI (#1841)

Introducing OpenSHMEM Get Involved

- OpenSHMEM mailing list for discussions and contributions can be joined at https://email.ornl.gov/mailman/listinfo/openshmem
 - OpenSHMEM web site
 - http://www.openshmem.org/
- SC11 Birds of a Feather
 - Wednesday, November 16th, 5:30pm 7:00pm (TCC 203)
- Come talk with the OpenSHMEMers here
 - Lauren Smith, Tony Curtis, Swaroop Pophale