SC11

INTRODUCING OPENSHMEM

Barbara Chapman, Tony Curtis, Swaroop Pophale University of Houston; Jeffery Kuehn, Oak Ridge National Laboratory; Stephen Poole, Oak Ridge National Laboratory and OSSS, Inc.; Lauren Smith, OSSS, Inc. & DOD
Introducing OpenSHMEM

Outline

- Structure of the Talk
 - Overview of PGAS and SHMEM
 - Features
 - A brief history
 - Defining OpenSHMEM
 - Standardization issues
 - Implementation work
 - Community building
Introducing OpenSHMEM

PGAS and SHMEM

- MPI became de facto standard library for distributed parallel computing
 - Message-passing, send + acknowledge

- PGAS
 - Processors with separate same-named variables
 - Each processor sees the same name, but has a separate copy
 - **Partitioned** Global Address Space
 - CAF, UPC, SHMEM
Introducing OpenSHMEM PGAS

Figure 1. Logical view of a PGAS Execution Model (UPC)
Introducing OpenSHMEM

SHMEM

- 1-sided communication requires less overhead
 - Shoot first, ask questions later
 - SHMEM is such a library
 - Symmetric Hierarchical MEMory

Introduction to SHMEM

- C and Fortran interfaces
- Variables can be allocated with global visibility
 - All processors see a named variable
 - Global Address Space
Introducing OpenSHMEM

SHMEM Feature Set

- Point-to-point put & get
- Broadcast & collect
- Arithmetical and logical reductions
- Atomic operations
- Locks
Introducing OpenSHMEM
One-sided communication

- One-sided communication allows one PE to access certain variables of another PE without interrupting the other PE

- SHMEM facilitates one-sided communication through SYMMETRIC variables

- There are two types of Symmetric Variables
 - Globals
 - Dynamically allocated and maintained by the SHMEM library
Introducing OpenSHMEM
One-sided communication

- **1-sided communication** without acknowledgement:
 - Sender waits
 - Receiver continues

- **2-sided communication** with acknowledgement:
 - Sender (waits)
 - Receiver

Diagram:
- Sender
- Receiver
- Arrows indicate communication flow
Introducing OpenSHMEM
One-sided communication

- Taking advantage of hardware for performance
 - Hardware offload frees other resources
 - Remote direct memory access
 - Processor can “put” directly to another processor’s memory without interrupting
 - Atomic, collective, locking and barrier operations can also benefit
 - Can produce substantial performance gains
Introducing OpenSHMEM
Symmetric Variables

- Communication in SHMEM
 - Symmetric variables
 - Accessible from remote processors (put/get)
 - Same name on all processors
 - At same *relative* address
 - But differing values
 - Fences and Barriers
 - To synchronize previous 1-sided communication
Introducing OpenSHMEM
Symmetric Variables

- Arrays or variables that exist with the same size, type, and relative address on all PEs.

- The following kinds of data objects are symmetric:
 - Globals
 - C/C++: Non-stack variables,
 - Fortran: objects in common blocks or with the SAVE attribute
 - dynamically allocated
 - C/C++: shmalloc,
 - Fortran: shpalloclip
int main (void)
{
 int *x;
 ...
 start_pes(0);
 ...
 x = (int*) shmalloc(sizeof(x));
 ...
 ...
 shmembARRIER_all();
 ...
 shfree(x);
 return 0;
}
Introducing OpenSHMEM
Symmetric Variables

if (_my_pe() == 0) {
 shmemb_int_put (dest = x, src = a, len = 1, pe = 1);
}
// has "a" arrived yet? We don't know...
Introducing OpenSHMEM

History of SHMEM

- History
 - Cray SHMEM
 - SGI SHMEM
 - Quadrics SHMEM
 - Others
 - HP SHMEM, IBM SHMEM (used internally only)
 - GPSHMEM

- OpenSHMEM

SHMEM was not defined by any one standard
Introducing OpenSHMEM

Need for Standardization

- Standardization & community
 - Various versions of SHMEM diverged
 - Different APIs, usage restrictions
 - So code is not directly portable
 - Simple example:

<table>
<thead>
<tr>
<th>SGI</th>
<th>Quadrics</th>
<th>SiCortex</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_pes(int npes)</td>
<td>start_pes(int npes)</td>
<td>start_pes(int npes) NO-OP</td>
</tr>
<tr>
<td></td>
<td>shmem_init(void)</td>
<td>shmem_init(void)</td>
</tr>
</tbody>
</table>
Introducing OpenSHMEM
Need for Standardization

- Here’s “Hello World” again on an SGI Altix

```c
#include <stdio.h>
#include <mpp/shmem.h>

int main(int argc, char **argv)
{
    int me, npes;

    start_pes(0);

    me = _my_pe();
    npes = _num_pes();

    printf("Hello from node %d of %d\n", me, npes);

    return 0;
}
```

Not the same in all SHMEMS
Introducing OpenSHMEM
Towards OpenSHMEM

- Standardization & community
 - Steve Poole founded “Open Source Software Solutions” (OSSS)
 - A home for OpenSHMEM
 - SGI transferred rights to SHMEM to OSSS
 - SGI has permanent chair
 - Form community to move forward and develop materials
Introducing OpenSHMEM
Towards OpenSHMEM

- SGI version as a starting-point
 - SGI (Altix) implementation as reference
 - With editorial rewrites
 - OpenSHMEM Specification 1.0 (released !)

- Develop new specification as version 2.0
 - Solicit new ideas from community
 - What features should be changed/added?

- Reference implementations
 - New OpenSHMEM written by University of Houston
 - Baseline for future development
 - 1.0 version complete and moving towards 2.0
Introducing OpenSHMEM Reference Implementation

OpenSHMEM programmer

OpenSHMEM API

Internal Comms API

... Internal Symm. Memory API

GASNet / ARMCI / direct drivers...

Network Layer: IB, Quadrics, Myrinet, ...

University of Houston: Implementation Structure
Introducing OpenSHMEM V&V

- Validation & Verification
 - Build core tests of correctness
 - Created by University of Houston
 - And of performance
 - To compare implementations of collective algorithms
 - For tuning of underlying libraries/transports
Introducing OpenSHMEM Outreach and Participation

- OpenSHMEM web site (LIVE!)
 - http://www.openshmem.org/
 - Community Wiki
 - Documentation: FAQ, cheatsheet, specification
 - Training material / tutorials
 - Software downloads
 - Source code of OpenSHMEM versions
 - Validation and Verification Suite
 - Sample programs
- Conferences/workshops
 - PGAS10, SC10, ICS11, PGAS11, SC11
- Mailing list
Introducing OpenSHMEM At SC11

- HERE and NOW
 - SC11 (Seattle, November 12-18)
 - Birds of a Feather meeting
 - OpenSHMEM
 - Wednesday, November 16th, 5:30pm – 7:00pm (TCC 203)
 - Current exhibition booth presence
 - PGAS (#124)
 - Oak Ridge National Laboratory (#1831)
 - Gulf Coast Academic Supercomputing (#3009)
 - SGI (#1841)
Introducing OpenSHMEM
Get Involved

• OpenSHMEM mailing list for discussions and contributions can be joined at
 https://email.ornl.gov/mailman/listinfo/openshmem

 ▪ OpenSHMEM web site
 ▫ http://www.openshmem.org/

 ▪ SC11 Birds of a Feather
 ▫ Wednesday, November 16th, 5:30pm – 7:00pm (TCC 203)

 ▪ Come talk with the OpenSHMEMers here
 ▫ Lauren Smith, Tony Curtis, Swaroop Pophale