SC11

INTRODUCING OPENSHMEM

Barbara Chapman, Tony Curtis, Swaroop Pophale University of Houston;
Jeffery Kuehn, Oak Ridge National Laboratory;

Stephen Poole, Oak Ridge National Laboratory and OSSS, Inc.;

Lauren Smith, OSSS, Inc. & DOD

Introducing OpenSHMEM
Outline

= Structure of the Talk

= Qverview of PGAS and SHMEM

- Features
* A brief history

= Defining OpenSHMEM
- Standardization issues

- Implementation work

Introducing OpenSHMEM
PGAS and SHMEM

= MPI became de facto standard library for distributed
parallel computing

- Message-passing, send + acknowledge

= PGAS
* Processors with separate same-named variables

* Each processor sees the same name, but has a separate

copy
- Partitioned Global Address Space

Introducing OpenSHMEM
PGAS

Thread 0 Thread 1 Thread
THREADS-1

Private O| Private 1 Private
THREADS

Figure 1. Logical view of a PGAS Execution
Model (UPC)

Introducing OpenSHMEM
SHMEM

» 1-sided communication requires less overhead
* Shoot first, ask questions later
* SHMEM is such a library

= |ntroduction to SHMEM
= Cand Fortran interfaces
= Variables can be allocated with global visibility

- All processors see a named variable

Introducing OpenSHMEM
SHMEM Feature Set

= Point-to-point put & get

» Broadcast & collect

= Arithmetical and logical reductions
= Atomic operations

= |ocks

Introducing OpenSHMEM
One-sided communication

= One-sided communication allows one PE to access
certain variables of another PE without interrupting
the other PE

= SHMEM facilitates one-sided communication
through SYMMETRIC variables

= There are two types of Symmetric Variables
- Globals
- Dynamically allocated and maintained by the SHMEM

Introducing OpenSHMEM
One-sided communication

sender waits receiver

2-sided communication with acknowledgement

1-sided communication without acknowledgement

Introducing OpenSHMEM
One-sided communication

= Taking advantage of hardware for
performance
= Hardware offload frees other resources
= Remote direct memory access

* Processor can “"put” directly to another processor’s
memory without interrupting

= Atomic, collective, locking and barrier operations
can also benefit

- Can produce substantial performance gains

Introducing OpenSHMEM
Symmetric Variables

= Communicationin SHMEM

= Symmetric variables
* Accessible from remote processors (put/get)
= Same name on all processors
= At same relative address
- But differing values

= Fences and Barriers

- To synchronize previous 1-sided communication

Introducing OpenSHMEM
Symmetric Variables

= Arrays or variables that exist with the same size,
type, and relative address on all PEs.

= The following kinds of data objects are symmetric:
= Globals

C/C++: Non-stack variables,

Fortran: objects in common blocks or with the SAVE
attribute

= dynamically allocated
C/C++: shmalloc,

Introducing OpenSHMEM
Symmetric Variables

start_pes(o);

x = (int*) shmalloc(sizeof(x));

shmem_barrier_all();

shfree(x);

Introducing OpenSHMEM
Symmetric Variables

PE o x = (int *) shmalloc(sizeof(int)); PE 1

Symmetric
memory

Put“a” ->x @ PE >ymmetric
memory

Same offset, but at potentially different addresses

if (_my pe() == 0) {
shmem int put (dest = x, src = a, len =1, pe = 1);

}

// has “a” arrived yet? We don’t know..

Introducing OpenSHMEM
History of SHMEM

u
SHMEM was not

defined by any one
standard

HP SHMEM, IBM SHMEM (used internally only)
GPSHMEM

Open Source Software

HOUSTOIil Solutions Inc.

Introducing OpenSHMEM
Need for Standardization

= Standardization & community

Various versions of SHMEM diverged
Different APIs, usage restrictions
So code is not directly portable
Simple example:

start_pes(int npes) start_pes(int npes) start_pes(int npes) NO-

shmem_init(void) OP
shmem_init(void)

Introducing OpenSHMEM
Need for Standardization

= Here's "Hello World” again on an SGI Altix

#include <stdio.h>

int
main(int argc, char **argv)

{

int me, npes;

(0);

me =

_ ()

npes = _ ()7

printf("Hello from node %4d of %4d\n”, me, npes);

Introducing OpenSHMEM
Towards OpenSHMEM

= Standardization & community

= Steve Poole founded "Open Source Software
Solutions” (OSSS)
* A home for OpenSHMEM
* SGl transferred rights to SHMEM to OSSS

= SGI has permanent chair

= Form community to move forward and develop
materials

Introducing OpenSHMEM
Towards OpenSHMEM

= SGlversion as a starting-point
= SGl (Altix) implementation as reference
= With editorial rewrites
= OpenSHMEM Specification 1.0 (released !)

= Develop new specification as version 2.0

= Solicit new ideas from community
= What features should be changed/added?

= Reference implementations
- New OpenSHMEM written by University of Houston
- Baseline for future development

Introducing OpenSHMEM
Reference Implementation

OpenSHMEM programmer

abstraction

Introducing OpenSHMEM
V&V

» Validation & Verification

> Build core tests of correctness
* Created by University of Houston
= And of performance

* To compare implementations of collective
algorithms

* For tuning of underlying libraries/transports

Introducing OpenSHMEM

Outreach and Participation

o OpenSHMEM web site (LIVE!)
* http://www.openshmem.org/
= Community Wiki
- Documentation: FAQ, cheatsheet, specification
* Training material / tutorials
- Software downloads

= Source code of OpenSHMEM versions
= Validation and Verification Suite
= Sample programs
= Conferences/workshops
- PGAS10, 5Ca0, ICS11, PGAS13, SCaa

- Mailing list

Introducing OpenSHMEM
At SC11

= HERE and NOW

© SC11 (Seattle, November 12-18)

* Birds of a Feather meeting
* OpenSHMEM
- Wednesday, November 16, 5:30pm — 7:00pm (TCC
203)
* Current exhibition booth presence
* PGAS (#124)
= Oak Ridge National Laboratory (#1831)

* Gulf Coast Academic Supercomputing (#3009)

Introducing OpenSHMEM
Get Involved

* OpenSHMEM mailing list for discussions and
contributions can be joined at
https://email.ornl.gov/mailman/listinfo/
openshmem

= OpenSHMEM web site
o http://www.openshmem.org/
= S(Ca1Birds of a Feather

- Wednesday, November 16", 5:30pm — 7:00pm
(TCC 203)

= Come talk with the OpenSHMEMers here

