Research Project SOW

1. Develop software in support of PGAS languages on IB and contribute it to the Open Source Community
2. Investigations of scaling on IB
3. Build a standard suite of benchmarks
Task 2: Investigations of scaling on IB

Learning lessons: InfiniBand scaling studies

• More focus on performance and consistency of short messages
• More focus on workloads with random/high communication
 − A suite of workloads to address all aspects of interconnect
• Improvements in adaptive routing
 − Adaptive routing effective with irregular patterns (hot-spots)
• Improvements in collective operations
 • Hardware acceleration: improve performance and reduce system noise
• Further reductions in memory footprint at scale
• Hybrid approach for InfiniBand transports in hardware and software
• Improvements in fabric management/monitoring
 − Identify congestion and bottlenecks
Task 1: PGAS language support

- OSSM API = “one-sided symmetric memory” API
- SHMEMlite = OpenShmem subset (w/o collectives)
- OSSM-* = OSSM implementations
Futures

- Optimization work in OSSM API implementations
- Other OSSM API implementations
 - SMP version, Ethernet …
- Other “Symmetric Memory Object” types
 - GPU memories / partitioned global files / …
- Collectives routines for SHMEMlite
 - Complete implementation of Open SHMEM
- “Direct” UPC support layer over OSSM
 - Which UPC?
 - Other PGAS languages?
Task 3: Suite of Benchmarks

- Benchmarks
 - Scatter / gather (random puts/gets to symmetric memory)
 - RandomRing (like HPCC randomring BW)
 - BarrierHisto (distribution of global barrier timings)
 - LoadBalance (lock operation based load balancing)
 - P2P (point-to-point BW/latency tests)
 - ShmemSort (distributed sort)

- Functional Tests (not part of task)