
OpenSHMEM TUTORIAL

Presenters: Swaroop Pophale and Tony Curtis
University of Houston, Texas

This work was supported by the United States
Department of Defense & used resources of the
Extreme Scale Systems Center at Oak Ridge
National Laboratory.

Acknowledgement

2

Outline
3

  About us
  Background
  History and Implementations
  The OpenSHMEM Effort
  OpenSHMEM API
  Porting
  A look ahead…
  References

OpenSHMEM Tutorial
Introductory Material

Tony Curtis Swaroop Pophale Dr. Barbara Chapman

Ricardo Mauricio Ram Nanjegowda

4

OpenSHMEM Tutorial
Introductory Material

  http://www.cs.uh.edu/~hpctools/
  Research in a number of areas

 Focused on large scale parallelism
 Exascale

  ~ 20 MS & PhD students
  3 senior staff and assistant professor

5

OpenSHMEM Tutorial
Introductory Material

  So what is it our group researches?

  OpenMP
 Extreme scale
 Distributed systems
 Locality

6

OpenSHMEM Tutorial
Introductory Material

  Compiler technology
 OpenUH (based on Open64)

7

OpenSHMEM Tutorial
Introductory Material

  Heterogeneous Computing
 Power-aware
 OpenMP
 MCA
 Accelerators

8

OpenSHMEM Tutorial
Introductory Material

  PGAS Languages and Libraries

 UPC

 CAF

 Both supported in OpenUH

9

OpenSHMEM Tutorial
Introductory Material

  PGAS Languages and Libraries

 SHMEM

 Chapel

10

WE WILL TAKE IT SEQUENTIALLY..

NEW TO PARALLEL COMPUTING? 11

12

  Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.

Background
What is Parallel Computing?

main{
Initialize...
.
Compute..
.
.
return 0;
}

Sequential Program

13

  Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.

Background
What is Parallel Computing?

main{
Initialize...
.
Compute..
.
.
return 0;
}

Parallel Program

Concurrent ≠ Parallel

14

  Single Program Multiple Data (SPMD)
  All processes are doing the same thing with different data items

  Multiple Program Multiple Data (MPMD)
  All process are executing different programs and using different data

items

Background
Different types Parallel Programming

Background
What is a Programming Model?

15

  A view of data and execution
  Where architecture and applications meet
  Can be viewed as a “contract”

  Everyone knows the rules

  Better understanding of performance considerations

  Benefits
  Application - independence from architecture
  Architecture - independence from applications

16

  Data Parallel Model
 HPF

  Communication Centric Model
 MPI

  Shared Memory Model
 OpenMP

  Distributed-Shared Memory Model or the
Partitioned Global Address Space Model
 UPC, CAF, SHMEM

Background
Programming Models

17

Logical Layout of PGAS Programming Model

Background
PGAS Programming Model

18

  Unified Parallel C
  Language defines a "physical" association between

shared data items and UPC threads called ”affinity”.
  All scalar data has affinity with thread 0.

  Arrays may have cyclic (per element), blocked-cyclic (user-defined) or
blocked (run-time) affinity.

  All thread interaction is explicitly managed by the
programmer through language primitives: locks,
barriers, memory fences.

  Work sharing using “forall”

Background
UPC

19

  The number of images is fixed and each image has its
own index, retrievable at run-time.

  Each image executes the same program
independently of the others.

  The programmer inserts explicit synchronization and
branching as needed.

  An “object” has the same name in each image.
  Each image works on its own local data.
  An image moves remote data to local data through,

and only through, explicit CAF syntax.

Background
CAF

NEW TO SHMEM? 20

  Symmetric Hierarchical MEMory library
  For Single Program Multiple Data style of programming
  Available for C , C++, and Fortran

  Used for programs that
  perform computations in separate address spaces and
  explicitly communicate data to and from different processes in the

program.

  The processes participating in SHMEM applications are
referred to as processing elements (PEs).

  SHMEM routines supply remote one-sided data
transfer, broadcast, reduction, synchronization, and
atomic memory operations.

21

Introduction
What is SHMEM?

22

  Cray SHMEM
  SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D
  Platforms: Cray T3D, T3E, PVP, XT series

  SGI SHMEM
  SGI incorporated Cray SHMEM in their Message Passing Toolkit (MPT)
  Owns the “rights” for SHMEM

  Quadrics SHMEM (company out of business)
  Optimized API for QsNet
  Platform: Linux cluster with QsNet interconnect

  Others
  GSHMEM, University of Florida
  HP SHMEM, IBM SHMEM (used internally only)
  GPSHMEM (cluster with ARMCI & MPI support, dead)

Note: SHMEM was not defined by any one standard.

Introduction
History of SHMEM

  Initialization
  Include header shmem.h

  E.g. #include <shmem.h> , #include <mpp/shmem.h>
  start_pes, shmem_init: Initializes the library
  my_pe: Get the PE ID of local processor (0 to N-1)
  num_pes: Get the total number of PEs in the program

SGI Quadrics Cray

Fortran C/C++ C/C++ Fortran C/C++

start_pes(0) start_pes(0) shmem_init start_pes start_pes

shmem_init shmem_init

NUM_PES _num_pes num_pes NUM_PES

MY_PE _my_pe my_pe

The Problem:
Differences in SHMEM Implementations (1)

23

#include <stdio.h>

#include <mpp/shmem.h>

int main(void)

{

 int me, npes;

 start_pes(0);

 npes = _num_pes();

 me = _my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

#include <stdio.h>

#include <shmem.h>

int main(void)

{

 int me, npes;

 shmem_init();

 npes = num_pes();

 me = my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

Hello World (SGI on Altix) Hello World (SiCortex)

The Problem:
Differences in SHMEM Implementations (2)

24

Hello World on SGI on Altix Hello World on SiCortex

The Problem:
Differences in SHMEM Implementations (2)

25

26

The Solution:

27

  An effort to create a standardized SHMEM library
API and defining expected behavior

  Aims at bringing together hardware vendors and
SHMEM library developers

  Discuss and extend standard with important new
capabilities

SGI’s SHMEM API is the baseline for OpenSHMEM
Specification 1.0

What is OpenSHMEM?

28

  Community web site (under construction)
  Wiki
  Documentation

  OpenSHMEM 1.0 Specification

  FAQ
  Cheat sheet

  Training material and tutorials
  Mailing list

 https://email.ornl.gov/mailman/listinfo/openshmem

OpenSHMEM
Outreach

29

  PGAS’10
 Workshop and paper

  SC’10 New Orleans
  Booth presence (PGAS, Oak Ridge National Laboratory, Gulf Coast

Academic Supercomputing)
  BOF Session
  GCAS booth presentation

  ICS 2011
 Poster Presentation

OpenSHMEM
Participation

30

  PGAS’11
 Workshop

  SC’11
 Poster
 BOF

OpenSHMEM
Participation

  RDMA lets one PE access certain variables of another PE
without interrupting the other PE

  SHMEM can take advantage of hardware RDMA

  SHMEM’s data transfer uses symmetric variables

31

Key Concept
Remote Direct Memory Access

  Symmetric Variables
  Scalars or arrays that exist with the same size, type, and relative address

on all PEs.

  There are two types of Symmetric Variables
  Globals
  Dynamically allocated and maintained by the SHMEM library

  The following kinds of data objects are symmetric:
  Fortran data objects

  in common blocks
  or with the SAVE attribute.

  Non-stack C and C++ variables.
  Fortran arrays allocated with shpalloc
  C and C++ data allocated by shmalloc

32

Key Concept
Symmetric Variables

Compile time Run time allocation
on symmetric heap

33

Dynamic allocation of Symmetric Data

int main (void)
{
 int *x;
 …
 start_pes(0);
 …
 x = (int*) shmalloc(sizeof(x));
 …
 …
 shmem_barrier_all();
 …
 shfree(x);
 return 0;
}

x x

x x

Same
off-set

PE 0 PE 1

PE 2 PE 3

Key Concept
Symmetric Variables

34

  Data transfers
  One sided puts and gets

  Synchronization

  Barrier, Fence, quiet

  Collective communication

  Broadcast, Collection, Reduction

  Address Manipulation and Data Cache control
  Not supported by all SHMEM implementations (Deprecated in OpenSHMEM 1.0)

  Atomic Memory Operations
  Provide mechanisms to implement mutual exclusion
  Swap, Add, Increment, fetch

  Distributed Locks
  Set, free and query

  Accessibility Query Routines
  PE accessible, Data accessible

OpenSHMEM
Routines

35

 Put
 Single value

  double, float, int, long, short, longlong, longdouble, char
 Contiguous object

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical
 Strided

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Data Transfer (1)

36

..
long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static long target[10];

start_pes(0);
if (_my_pe() == 0) {
 /* put 10 words into target on PE 1 */
 shmem_long_put(target, source, 10, 1);
}
shmem_barrier_all(); /* sync sender and receiver */

if (_my_pe() == 1) {
 for(i=0;i<10;i++)
 printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
}
…

Code snippet showing a put from PE 0 to PE 1

OpenSHMEM API
Data Transfer (2): Put

PE 0 PE 1

Shared Address Space

Private Address Space

target

source

Excuse me while I overwrite your
copy of source

?

Output

target[0] on PE 1 is 1
target[1] on PE 1 is 2
target[2] on PE 1 is 3
target[3] on PE 1 is 4
…
target[9] on PE 1 is 10

OpenSHMEM API
Data Transfer (3): Put

37

38

 Get
 Single value

  double, float, int, long, short, longlong, longdouble, char
 Contiguous object

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical
 Strided

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Data Transfer (4)

39

..
static long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
long target[10];

start_pes(0);
if (_my_pe() == 1) {
 /* get 10 words into target from PE 0 */
 shmem_long_get(target, source, 10, 0);
}

if (_my_pe() == 1) {
 for(i=0;i<10;i++)
 printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
}
…

Code snippet showing PE 1 get data from PE 0

OpenSHMEM API
Data Transfer (4): Get

PE 0 PE 1

Shared Address Space

Private Address Space

source

target

Excuse me while I get a copy of
source

source

Output

target[0] on PE 1 is 1
target[1] on PE 1 is 2
target[2] on PE 1 is 3
target[3] on PE 1 is 4
…
target[9] on PE 1 is 10

OpenSHMEM API
Data Transfer (5): Get

40

  Barrier

  pSync is a symmetric work array that enables overlapping collective
communication

  void shmem_barrier_all()
  All PEs wait until every PE calls this function

  void shmem_barrier(int PE_start, int PE_stride, int PE_size, long
*pSync)
  Barrier operation on subset of PEs

41

NEW CONCEPT
“ACTIVE SET”

Subset of PEs defined by Start_PE, logPE_stride and

PE_sizes

OpenSHMEM Collective API
Group Synchronization

42

  Quick look at Active Sets
 Example 1

 PE_start = 0, logPE_stride = 0, PE_size = 4
ACTIVE SET?

 Example 2
 PE_start = 0, logPE_stride = 1, PE_size = 4
ACTIVE SET?

 Example 3
 PE_start = 2, logPE_stride = 2, PE_size = 3
ACTIVE SET?

PE 0, PE 1, PE 2, PE 3

PE 0, PE 2, PE 4, PE 6

PE 2, PE 6, PE 10

OpenSHMEM Collective’s Concept
Active Sets

43

shmem_barrier_all() synchronizes all executing PEs

Ensures completion of all
•  local memory stores
•  remote memory updates

Group Synchronization (1):
shmem_barrier_all()

PE 0

PE 3

PE 1

PE 2

Barrier Barrier

Group Synchronization (2):
shmem_barrier_all()

44

PE 0

PE 3

PE 1

PE 2

Barrier Barrier

Group Synchronization (3):
shmem_barrier(…)

45

46

  Point-to-Point synchronization
  Wait
  Wait Until

  Equal, Not equal, Greater than, Less than or equal to, Less than,
Greater than or equal to

  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Point-to-Point Synchronization (1)

47

OpenSHMEM API
Point-to-Point Synchronization (2)

…
…
long *dest;
dest = (long *) shmalloc(sizeof(*dest));
*dest = 9L;
shmem_barrier_all();
….
if (me == 1) {
 shmem_long_wait(dest, 9L);
}
…
if (me == 0) {
 src=101;
 shmem_long_put(dest, &src, 1, 1);
}
shmem_barrier_all();
…

PE 0 PE 1

PE 1 waits

Code snippet showing operation of shmem_wait

  Fence (data transfer sync.)
  Ensures ordering of outgoing write (put) operations to a single PE
  void shmem_fence()

  Quiet (data transfer sync.)
  Waits for completion of all outstanding remote writes initiated from the

calling PE (on some implementations fence = quiet)
  void shmem_quiet()

48

OpenSHMEM API
Point-to-Point Synchronization (3)

  One-to-all communication
 void shmem_broadcastSS(void *target, void

*source, int nelems, int PE_root, int PE_start, int
PE_stride, int PE_size, long *pSync)

 Storage Size (SS, bits) = 32/4, 64/8

49

OpenSHMEM Collective API
Broadcast (1)

50

OpenSHMEM Collective API
Broadcast (2)

…
…
int *target, *source;
target= (int *) shmalloc(sizeof(int));
source= (int *) shmalloc(sizeof(int));
*target= 0;
*source= 101;
shmem_barrier_all();
if (me == 1) {
 *source = 222;
}
shmem_broadcast32(target, source, 1, 0, 0, 0, 4, pSync);

printf("target on PE %d is %d\n", _my_pe(), *target);
…

Code snippet showing operation of shmem_broadcast

collective operation

must be symmetric number of elements Zero-based ordinal of the PE
with respect to the active set
Define the active set

Output

target on PE 0 is 0
target on PE 1 is 222
target on PE 2 is 222
target on PE 3 is 222

PE 0

Shared Address Space

Private Address Space

A

PE 1

A

PE 2

A

PE 3

A A A A

OpenSHMEM Collective API
Broadcast (3): Working

51

52

  Example 1
  PE_root = 0, PE_start = 0, logPE_stride = 0, PE_size = 4

PE 0 broadcasts to PE 1, PE 2 and PE 3

  Example 2
  PE_root = 2, PE_start = 2, logPE_stride = 0, PE_size = 4
PE 4 broadcasts to PE 2, PE 3 and PE 5

  Example 3
  PE_root = 1, PE_start = 0, logPE_stride = 1, PE_size = 4

PE 2 broadcasts to PE 0, PE 4 and PE 6

OpenSHMEM Collective API
Broadcast (4): Root & Active Set

53

  Collect
  Concatenates blocks of data from multiple PEs to an array in every PE
  void shmem_collectSS(void *target, void *source, int nelems, int PE_start, int

PE_stride, int PE_size, long *pSync)
  Storage Size (SS, bits) = 32, 64,128, mem (any size)

  Fixed Collect
  void shmem_fcollectSS(void *target, void *source, int nelems, int PE_start, int

PE_stride, int PE_size, long *pSync)

Storage Size (SS, bits) = 32, 64 (default)

OpenSHMEM Collective API
Collect (1)

PE 0

Shared Address Space

Private Address Space

AA B

PE 1

AA B

PE 2

AA B

PE 3

AA B

B B B B

OpenSHMEM Collective API
Collect (2): Working of Collect

54

55

  Logical
 and, or, xor

  Extrema
 max, min

  Arithmetic
 product, sum

  TYPE = int, long, longlong, short

OpenSHMEM Collective API
Reductions (1)

PE 0

Shared Address Space

Private Address Space

A B

PE 1 PE 2 PE 3

A B A B A B

C C C

A A

C

AA

A A

AAA

A

A A

OpenSHMEM Collective API
Reductions (2): Working

56

57

  Swap
  Unconditional

  long shmem_swap(long *target, long value, int pe)

  TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)

  TYPE = double, float, int, long, longlong, short
  Conditional

  TYPE shmem_TYPE_cswap(TYPE *target, int cond, TYPE value, int pe)

  TYPE = int, long, longlong, short

  Arithmetic
  TYPE shmem_TYPE_OP(TYPE *target, TYPE value, int pe)

  OP = fadd, finc

  TYPE = int, long, longlong, short

OpenSHMEM API
Atomic Operations (1)

58

…
…
long *dest;
dest = (long *) shmalloc(sizeof(*dest));
*dest= me;
shmem_barrier_all();
….
new_val = me;
if (me== 1) {
 swapped_val = shmem_long_swap(dest, new_val, 0);
 printf(“PE %d: dest = %d, swapped = %d\n", me, *target, swapped_val);
}
shmem_barrier_all();
…

OpenSHMEM API
Atomic Operations (2)

Output

PE 1: dest = 1, swapped = 0

59

  shmem_pe_accessible
  Determines whether a processing element (PE) is accessible via

SHMEM data transfer operations

  shmem_addr_accessible
 Determines whether an address is accessible via SHMEM

data transfers operations from the specified remote
processing element (PE)

OpenSHMEM API
Accessibility

60

  Set lock
  first-come, first-served manner

  Clear lock
  ensuring that all local and remote stores initiated in the

critical region are complete before releasing the lock

  Test lock
  avoid blocking
  function returns without waiting

OpenSHMEM API
Mutual Exclusion: Locks

61

  Address manipulation
  shmem_ptr - Returns a pointer to a data object on a remote PE

  Cache control
  shmem_clear_cache_inv - Disables automatic cache coherency mode

  shmem_set_cache_inv - Enables automatic cache coherency mode
  shmem_set_cache_line_inv - Enables automatic line cache coherency

mode
  shmem_udcflush - Makes the entire user data cache coherent
  shmem_udcflush_line - Makes coherent a cache line

OpenSHMEM API
Address Manipulation and Cache

Sequential to Parallel using OpenSHMEM 62

63

  Preparation
 Code Analysis

  To determine what the code does and how it does it
  Should fit SPMD style of programming

 Dependency Analysis
 Data dependencies

  True dependency, input dependency

 Control dependencies
  To determine the sections of code that can run in parallel and

those that must be executed sequentially.

Parallelization using OpenSHMEM
Step 1

64

 Decide what variables need to be symmetric
 only variables that need to be communicated

 Add shmem API calls for communication and
computation

 Add shmem synchronization
 To insure updates
 Separate different stages

Parallelization using OpenSHMEM
Step 2

65

Parallelization using OpenSHMEM
Example

Int main(void){

 }
}

Compute

Compute

Collect Results

Collect Results

for(…){
Parallel

Synchronize
collectives

Parallel

Synchronize

66

  Image Processing and Data I/O Application
benchmark developed for High Productivity
Computing Systems (HPCS).

  SSCA3 benchmark has essentially two stages;
  front-end
 back-end

Parallelization using OpenSHMEM
Example:SSCA3

67

UPC SHMEM

SYNTACTIC
COMPLEXITY

LOW HIGH

CONCEPTUAL
COMPLEXITY

LOW MEDIUM

MAXIMUM SPEED-
UP

6.27 8.94

Parallelization using OpenSHMEM
Example:SSCA3, Our observations

68

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Number of threads

Execution Times

Parallelization using OpenSHMEM
Example:SSCA3

PORTING APPLICATIONS: MPI 1.0 TO SHMEM 69

  Step 1: Replace initialization calls
  Step 2: Replace MPI send-receive pair by a single

put/get with appropriate synchronization
  Step 3: Replace MPI collective calls with SHMEM

collective calls
  Step 4: For calls that do not have corresponding

OpenSHMEM calls

MPI 1.0 to OpenSHMEM
Incremental Porting

70

Example: Stage 1 (Initialization)

#include <mpp/shmem.h>

int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

….

MPI_Finalize();

MPI 1.0 to OpenSHMEM
Incremental Porting: Stage1 (2)

Include shmem.h

start_pes(0);
comm_size = _num_pes();
 my_rank = _my_pe();

71

MPI_Alltoall(send_count, 1, MPI_INT, recv_count, 1,
MPI_INT, MPI_COMM_WORLD);

for(i=0; i<npes; i++){
 shmem_int_put(&recv_count, &send_count, 1, i);
}

72

MPI 1.0 to OpenSHMEM
Incremental Porting: Unmatched calls

Replace by

73

MPI 1.0 to OpenSHMEM
Incremental Porting: Matrix Multiplication

MPI Code
Distribute blocks of COLUMNS to each process

 np = size; // number of processes

 blocksize = COLUMNS/np; // block size

 B_matrix_displacement = rank * blocksize ;

Allocate local arrays

 a_local = (double **)malloc(ROWS*sizeof(double *));

 b_local = (double **)malloc(ROWS*sizeof(double *));

 c_local = (double **)malloc(ROWS*sizeof(double *));

Initialize local arrays

 for(i=0; i<ROWS; i++) {

 a_local[i] = (double *)malloc(blocksize*sizeof(double));

..

 }

OpenSHMEM Code
Distribute blocks to COLUMNS to each process

 np = size; // number of processes

 blocksize = COLUMNS/np; // block size

 B_matrix_displacement = rank * blocksize ;

Allocate SHMEM arrays

 shmem_barrier_all();

 a_local = (double **)shmalloc(ROWS*sizeof(double *));

 b_local = (double **)shmalloc(ROWS*sizeof(double *));

 c_local = (double **)shmalloc(ROWS*sizeof(double *));

Initialize arrays

 for(i=0; i<ROWS; i++) {

 a_local[i] = (double
*)shmalloc(blocksize*sizeof(double));

…

 }

74

MPI 1.0 to OpenSHMEM
Incremental Porting: Matrix Multiplication

MPI Code
Send the Local block of matrix a to process on right

 MPI_Barrier(MPI_COMM_WORLD);

 if(rank == np-1)

 MPI_Isend (&a_local[i][0],blocksize,MPI_DOUBLE,
0,

 1,MPI_COMM_WORLD,&req[0]);

 else

 MPI_Isend (&a_local[i]
[0],blocksize,MPI_DOUBLE,rank+1,

 1,MPI_COMM_WORLD,&req[1]);

 if(rank == 0)

 MPI_Recv(&a_local[i]
[0],blocksize,MPI_DOUBLE,np-1,

 1,MPI_COMM_WORLD,&status);

 else

 MPI_Recv(&a_local[i]
[0],blocksize,MPI_DOUBLE,rank-1,

 1,MPI_COMM_WORLD,&status);

Compute the local displacement

…

OpenSHMEM Code
Send the Local block of matrix 'a' to process on right

 shmem_barrier_all();

 if(rank == np-1)

 shmem_double_put(&a_local[i][0],&a_local[i]
[0],blocksize,0);

 else

 shmem_double_put(&a_local[i][0],&a_local[i]
[0],blocksize,rank+1);

 shmem_barrier_all();

Compute the local displacement (REMAINS SAME AS MPI)

…

75

MPI 1.0 to OpenSHMEM
Direct Replacement (1)

MPI calls Possible OpenSHMEM calls

MPI_Init(&argc, &argv) start_pes(0)

MPI_Comm_rank(MPI_COMM_WORLD,
&my_rank)

_my_pe()

MPI_Comm_size(MPI_COMM_WORLD,
&comm_size)

_num_pes()

MPI_Barrier(comm) shmem_barrier_all()

MPI_Allreduce(bucket_size,
bucket_size_totals, SIZE, MPI_INT,
MPI_SUM, MPI_COMM_WORLD)

shmem_int_sum_to_all(bucket_size_totals,buc
ket_size,SIZE,

0,0,comm_size,ipWrk,pSync)

MPI_Bcast(lt, 1, MPI_INTEGER, 0,
MPI_COMM_WORLD)

shmem_broadcast4(lt, lt, 1, 0, 0, 0, nprocs,
pSync)

76

MPI 1.0 to OpenSHMEM
 Direct Replacement (2)

MPI calls Possible OpenSHMEM calls

MPI_Send(send_buff,
buff_len,MPI_DOUBLE,to_rank....)

shmem_double_put(recv_buff,send_buff,buff_
len, to_rank)

MPI_Recv(recv_buff, buff_len,dp_type,
from_rank....)

shmem_double_get(recv_buff,send_buff,buff_
len, from_rank)

MPI_Wait(request,status) shmem_wait(variable, value)

MPI_reduce(t, tmax, 1,MPI_REAL,
MPI_MAX,root, mpi_comm_world)

shmem_int_max_to_all(tmax,t,
1,0,0,nprocs,pwrk,psync)

MPI_Scatter(src,count,MPI_INT,dst,count,
MPI_INT, 0, comm_world)

shmem_broadcast(dst, src, count, 0, 0, 0, size,
pSync)

MPI_Gather(src,count,MPI_INT,dst,count,
MPI_INT, 0, comm_world)

shmem_collect32(dst, src, count, 0, 0, 0, size,
pSync)

77

MPI 1.0 to OpenSHMEM
Equivalent OpenSHMEM calls

MPI calls Possible OpenSHMEM calls

MPI_AlltoAll for(j1=0;j1<comm_size;j1++){
shmem_int_put(&recv_count[my_rank],

 &send_count[j1],1,j1);
}

MPI_AlltoAllv for(j1=0;j1<comm_size;j1++){
int k1 = send_displ[j1];
static int k2;
shmem_int_get(&k2,&recv_displ[my_rank]

 ,1,j1);
shmem_int_put(key_buff2+k2,key_buff1+k

 1,send_count[j1],j1);
}

MPI_Comm and MPI_Group calls NA

MPI_Finalize

NA

OpenSHMEM vs. MPI 2.0 78

Collective Call

MPI_Win_create(var1, window1)

MPI_Win_create(var2, window2)

Process 0 Process1

…… …..

MPI_Put(window1) MPI_Put(window2)

……. ……

MPI Window semantics

•  All processes which intend to
use the window must
participate in window creation

•  Many or all the local
allocations/objects should be
coalesced within a single
window creation.

SHMEM semantics

•  All global and static data are
by default accessible to all
process.

•  Local allocations/objects can
be made remotely accessible
using shmalloc instead of
malloc

Symmetric Data

Global variables

Static local or global variables

shmalloc() memory

Process 0 Process 1

shmem_get(&var1) shmem_put(&var2)

……. ………

OpenSHMEM vs. MPI 2.0
Symmetric memory allocation

79

Process 0 (Source)

MPI_Fence

……

If(rank==0)

 MPI_Put

…….

MPI_Fence

MPI_Win_fence

•  Fence is a collective call.

•  Need 2 fence calls, one
to separate and another
one to complete.

•  So it mostly functions like
barrier

shmem_fence

•  shmem fence is just meant
for ordering of puts.

•  It does not separate the
processes nor does it mean
completion

•  Ensures there are no
pending puts to be delivered
to the same target before the
next put

Process 0 (Source)

shmem_fence

……

shmem_put()

shmem_fence()

shmem_put()

…….

Process 1 (Dest)

MPI_Fence

……

If(rank==0)

 MPI_Put

…….

MPI_Fence

Process 0 (Source)

shmem_fence

……

shmem_put()

shmem_fence()

shmem_put()

…….

Process 0 (Source)

shmem_fence()

……

shmem_put()

shmem_fence()

shmem_put()

…….

Process 1 (Dest)

shmem_fence()

……

shmem_put()

shmem_fence()

shmem_put()

…….

OpenSHMEM vs. MPI 2.0
Synchronization (1)

80

Process 0 (Source)

MPI_Start

……

MPI_Put

MPI_Put

…….

MPI_Complete

Process 1 (Dest)

MPI_Post

….

Cannot do anything

…….

MPI_Wait

•  Point to point
synchronization.

•  Sender does Start and waits
for Post from receiver

•  The receiver does Post and
waits for the data.

•  The sender Puts the data
and signals completion to
receiver

•  The receiver can directly wait
for the data using
shmem_wait on a event flag.

•  The sender puts the data
and sets the event flag to
signal the receiver.

•  Both post and complete are
implicit inside the wait and put
operation.

Process 0 (Source)

shmem_put(data)

shmem_put(flag1)

shmem_wait(flag2)

…….

…….

Process 1 (Dest)

shmem_wait(flag1)

……

shmem_put()

shmem_fence()

shmem_put(flag2)

…….

OpenSHMEM vs. MPI 2.0
Synchronization (2)

81

Process 0 (Source)

If(rank == 0) {

MPI_Win_lock

MPI_Put

MPI_Win_unlock

}

•  No mutual exclusion

•  Lock is not real lock, but
begin RMA

•  Unlock means end RMA

•  Only the source calls
lock

Process 0 (Source)

shmem_set_lock

……..

shmem_put(data)

…….

shmem_clear_lock()

Process 1 (Dest)

shmem_set_lock

…….

shmem_put(data)

shmem_clear_lock()

Process 1 (Dest)

If(rank == 0) {

MPI_Win_lock

MPI_Put

MPI_Win_unlock

}

•  Enforces mutual
exclusion

•  The PE which acquires
lock does put

•  The waiting PE gets the
lock on first come first
served basis

OpenSHMEM vs. MPI 2.0
Synchronization (3)

82

83

  Window creation is a collective operation
  May restrict the use of passive-target RMA operations

to only work on memory allocated using
MPI_Alloc_mem

  It is erroneous to have concurrent conflicting RMA get/
put (or local load/store)

  Multiple windows are allowed to include overlapping
memory regions, however it is erroneous to use
concurrent operations to distinct overlapping windows

OpenSHMEM vs. MPI 2.0
Difficulties using MPI 2.0

84

  OpenSHMEM is intended to be a specification that
 Standardizes current efforts
 Doesn’t restrict implementors

  Want to allow freedom for innovation on hardware
  E.g. collectives/atomics on NICs
  Emerging manycore architectures

 MIC, Bluegene/Q
  Embedded systems with DMA engines

 Heterogeneous architectures
  E.g. Convey, “ceepee-geepee”

OpenSHMEM and Hardware

85

1.  Hongzhang Shan and Jaswinder Pal Singh, A Comparison of MPI, SHMEM and Cache-coherent Shared
Address Space Programming Models on the SGI Origin2000

2.  SHMEM tutorial by Hung-Hsun Su, HCS Research Laboratory,University of Florida

3.  Evaluating Error Detection Capabilities of UPC Compilers and Runtime Error detection by Iowa Sate
University http://hpcgroup.public.iastate.edu/CTED/

4.  Quadrics SHMEM Programming Manual http://www.psc.edu/~oneal/compaq/ShmemMan.pdf

5.  Glenn Luecke et. al., The Performance and Scalability of SHMEM and MPI-2 One-Sided Routines on a SGI
Origin 2000 and a Cray T3E-600 http://dsg.port.ac.uk/Journals/PEMCS/papers/paper19.pdf

6.  Patrick H. Worley, CCSM Component Performance Benchmarking and Status of the CRAY X1 at ORNL
http://www.csm.ornl.gov/~worley/talks/index.html

7.  Karl Feind, Shared Memory Access (SHMEM) Routines

8.  Galen M. Shipman and Stephen W. Poole, Open-SHMEM: Towards a Unified RMA Model

References

86

Thanks!

Questions?

