OpenSHMEM TUTORIAL

Presenters: Swaroop Pophale and Tony Curtis

University of Houston, Texas

Acknowledgement

National Laboratory

This work was supported by the United States
Department of Defense & used resources of the

Extreme Scale Systems Center at Oak Ridge
National Laboratory.

Qutline

a About us

0 Background

a History and Implementations
0 The OpenSHMEM Effort

a0 OpenSHMEM API

Q Porting

0 A look ahead...

0 References

OpenSHMEM Tutorial
Introductory Material

Dr. Barbara Chapman Tony Curtis Swaroop Pophale

OpenSHMEM Tutorial
Introductory Material

Research in a number of areas
Focused on large scale parallelism

Exascale

~ 20 MS & PhD students

3 senior staff and assistant professor

OpenSHMEM Tutorial
Introductory Material

1 So what is it our group researches?

1 OpenMP

Extreme scale
Distributed systems
Locality

OpenSHMEM Tutorial
Introductory Material

1 Compiler technology
OpenUH (based on Opené4)

OpenSHMEM Tutorial
Introductory Material

1 Heterogeneous Computing
Power-aware
OpenMP
MCA

Accelerators

OpenSHMEM Tutorial
Introductory Material

1 PGAS Languages and Libraries

UPC

CAF

Both supported in OpenUH

OpenSHMEM Tutorial
Introductory Material

1 PGAS Languages and Libraries

SHMEM ﬂ%a
Chapel (@@@opel

n NEW TO PARALLEL COMPUTING?

WE WILL TAKE IT SEQUENTIALLY..

Background
What is Parallel Computing?

Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.

Sequential Program

main{
Initialize...
Compue..
return ;2;
}

Background

7 Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.

.Comp ,
;'eturni ‘
o

Background
Different types Parallel Programming

Single Program Multiple Data (SPMD)

All processes are doing the same thing with different data items

Multiple Program Multiple Data (MPMD)

All process are executing different programs and using different data
items

Background
What is a Programming Model?

A view of data and execution
Where architecture and applications meet

Can be viewed as a “contract”
Everyone knows the rules

Better understanding of performance considerations

Benefits

Application - independence from architecture

Architecture - independence from applications

Background
Programming Models

Data Parallel Model
HPF

Communication Centric Model
MPI

Shared Memory Model
OpenMP

Distributed-Shared Memory Model or the
Partitioned Global Address Space Model

UPC, CAF, SHMEM

Background
PGAS Programming Model

Thread 0 Thread 1 Thread
THREADS-1
i ~ Shared
Private O| Private 1 P Private
THREADS1

Logical Layout of PGAS Programming Model

Background
UPC

Unified Parallel C

Language defines a "physical" association between

shared data items and UPC threads called "affinity”.
All scalar data has affinity with thread O.

Arrays may have cyclic (per element), blocked-cyclic (user-defined) or
blocked (run-time) affinity.

All thread interaction is explicitly managed by the
programmer through language primitives: locks,
barriers, memory fences.

Work sharing using “forall”

Background
CAF

The number of images is fixed and each image has its
own index, retrievable at run-time.

Each image executes the same program
independently of the others.

The programmer inserts explicit synchronization and
branching as needed.

An “object” has the same name in each image.
Each image works on its own local data.

An image moves remote data to local data through,
and only through, explicit CAF syntax.

Introduction

What is SHMEM?

Symmetric Hierarchical MEMory library
For Single Program Multiple Data style of programming
Available for C, C++, and Fortran

Used for programs that
perform computations in separate address spaces and

explicitly communicate data to and from different processes in the
program.

The processes participating in SHMEM applications are
referred to as processing elements (PEs).

SHMEM routines supply remote one-sided data
transfer, broadcast, reduction, synchronization, and
atomic memory operations.

Introduction
History of SHMEM

Cray SHMEM

SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D
Platforms: Cray T3D, T3E, PVP, XT series
SGI SHMEM
SGl incorporated Cray SHMEM in their Message Passing Toolkit (MPT)
Owns the “rights” for SHMEM
Quadrics SHMEM (company out of business)
Optimized API for QsNet
Platform: Linux cluster with QsNet interconnect
Others
GSHMEM, University of Florida
HP SHMEM, IBM SHMEM (used internally only)
GPSHMEM (cluster with ARMCI & MPI support, dead)

Note: SHMEM was not defined by any one standard.

The Problem:
Differences in SHMEM Implementations (1)

Initialization
Include header shmem.h
E.g. #include <shmem.h> , #include <mpp /shmem.h>
start_pes, shmem_init: Initializes the library
my_pe: Get the PE ID of local processor (O to N-1)
num_pes: Get the total number of PEs in the program

SGl Quadrics Cray
Fortran C/C++ C/C++ Fortran C/C++
start_pes(0) start_pes(0) shmem_init start_pes start_pes

shmem_init

shmem_init

NUM_PES

__num_pes

num_pes

NUM_PES

MY_PE

_my_pe

my_ pe

The Problem:

Hello World (SGI on Altix) Hello World (SiCortex)

#include <stdio.h> #include <stdio.h>
#include <mpp/shmem.h> #include <shmem.h>
int main(void) int main(void)
{ {
int me, npes; int me, npes;
start_pes(0); shmem_init();
npes = _num_pes(); npes = num_pes();
me = _my_pe(); me = my_pe();
printf("Hello from %d of %d\n", me, npes); printf("Hello from %d of %d\n", me, npes);
return O; return O;

The Problem:

Hello World on SGI on Altix Hello World on SiCortex

#include <stdio.h> #include <stdio.h>
#include <mpp/shmem.h> #include <shmem.h>
int main(void) intmain(void)
{ {
int me, npes; int me, npes;
start_pes(0); shmem_init();
npes=_num_pes(); npes=num_pes();
me=_my_pe(); me = my_pe();
printf("Hello from %d of %d\n", me, npes); printf("Hello from %d of %d\n", me, npes);
return0; return 0;

The Solution:

OpenSHMEM

_ UNIVERSITY of OAK
v A HOUSTON Open Source Software Solutions Inc. R.[DGE
b by <) National Laboratory

What is OpenSHMEM?

o1 An effort to create a standardized SHMEM library
APl and defining expected behavior

-1 Aims at bringing together hardware vendors and
SHMEM library developers

01 Discuss and extend standard with important new
capabilities

OpenSHMEM
Outreach

Community web site (under construction)
Wiki
Documentation

OpenSHMEM 1.0 Specification

FAQ
Cheat sheet

Training material and tutorials

Mailing list

OpenSHMEM
Participation

PGAS’'10
Workshop and paper

SC’'10 New Orleans

Booth presence (PGAS, Oak Ridge National Laboratory, Gulf Coast
Academic Supercomputing)

BOF Session
GCAS booth presentation

ICS 2011

Poster Presentation

OpenSHMEM

0 PGAS’11
21 Workshop

- SC'11
=1 Poster

=1 BOF

Key Concept
Remote Direct Memory Access

RDMA lets one PE access certain variables of another PE
without interrupting the other PE

SHMEM can take advantage of hardware RDMA

SHMEM'’s data transfer uses symmetric variables

Key Concept
Symmetric Variables

1 Symmetric Variables

Scalars or arrays that exist with the same size, type, and relative address
on all PEs.

01 There are two types of Symmetric Variables

Globals
Dynamically allocated and maintained by the SHMEM library

o1 The following kinds of data objects are symmetric:
Fortran data objects
® in common blocks
u or with the SAVE attribute.
Non-stack C and C++ variables.
Fortran arrays allocated with shpalloc
C and C++ data allocated by shmalloc

Key Concept

oy mmetric Variables

PE 0 PE 1

int main (void)
{
int *x;
start_pes(0);

;("= (int*) shmalloc(sizeof(x));

shmem_barrier_all();

shfree(x);
return 0;

Dynamic allocation of Symmetric Data

OpenSHMEM

oy Routines

0 Data transfers
o One sided puts and gets

O Synchronization
o Barrier, Fence, quiet

0 Collective communication
1 Broadcast, Collection, Reduction

0 Address Manipulation and Data Cache control
o Not supported by all SHMEM implementations (Deprecated in OpenSHMEM 1.0)

O Atomic Memory Operations
o Provide mechanisms to implement mutual exclusion
o Swap, Add, Increment, fetch

O Distributed Locks
o Set, free and query

O Accessibility Query Routines
1 PE accessible, Data accessible

OpenSHMEM API
Data Transfer (1)

Put

Single value
double, float, int, long, short, longlong, longdouble, char
Contiguous object

For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

For Fortran: TYPE=complex, integer, real, character, logical

Strided

For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Data Transfer (2): Put

long source[10] ={1,2,3,4,5,6,7,8,9,10 };
static long target[10];

start_pes(0);

if (_my_pe() == 0) {
[* put 10 words into target on PE 1 */
shmem _long_put(target, source, 10, 1);

}

shmem_barrier_all(); /* sync sender and receiver */

if (C_my_pe() == 1) {
for(i=0;i<10;i++)
printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
}

Code snippet showing a put from PE 0 to PE 1

OpenSHMEM API
Data Transfer (3): Put

Excuse me while | overwrite your

_ copy of source

PE .
@ 0 Output H PE1

target[0] on PE 1 is 1
target[1] on PE 1 is 2
target[2] on PE 1is 3
target[3] on PE 1is 4
Shared Address Space
B target[9] on PE 1is 10
Private Address Space _

OpenSHMEM API
Data Transfer (4)

Get

Single value
double, float, int, long, short, longlong, longdouble, char
Contiguous object

For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

For Fortran: TYPE=complex, integer, real, character, logical

Strided

For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Data Transfer (4): Get

static long source[10] ={ 1,2, 3,4,5,6,7,8,9, 10 };
long target[10];

start_pes(0);

if C_my_pe() == 1) {
/* get 10 words into target from PE 0 */
shmem_long_get(target, source, 10, 0);

}

if (_my_pe() == 1){
for(i=0;i<10;i++)
printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
}

Code snippet showing PE 1 get data from PE 0

OpenSHMEM API
Data Transfer (5): Get

source

Excuse me while | get a copy of
source

.. PEO Output .. PE 1
target[0] on PE 1 is 1
target[1] on PE 1 is 2
target[2] on PE 1is 3
target[3] on PE 1is 4
Shared Address Space
B target[9] on PE 1is 10
Private Address Space _

OpenSHMEM Collective API

- 2roup Synchronization

-1 Barrier

pSync is a symmetric work array that enables overlapping collective
communication

void shmem_barrier_all()
w All PEs wait until every PE calls this function

. h
NEW CONCEPT

“ACTIVE SET”

Subset of PEs defined by Start_PE, logPE_stride and

\ PE_sizes /

OpenSHMEM Collective’s Concept
Active Sets

1 Quick look at Active Sets

Example 1

w PE_start = O, logPE_stride = 0, PE_size = 4
ACTIVE SET? PEO,PE1,PE2,PE3

Example 2

w PE_start = O, logPE_stride = 1, PE_size = 4
ACTIVE SET? PE O, PE 2, PE4,PE6

Example 3

m PE_start = 2, logPE_stride = 2, PE_size = 3
ACTIVE SET? PE 2, PE 6, PE 10

Group Synchronization (1):

PEO CODE

shmem_int_put(dest=x, src =x, len=
Symmetric ‘ B
I
shmem_int_get (dest=y, src=y,len=1,

shmem_barrier_all();

PEO PE1

X X Symmetric
s o -
Symmetric
e -

shmem_barrier_all() synchronizes all executing PEs

Group Synchronization (2):

oy Shmem_barrier_all)—

__
———
———
__

Barrier Barrier

Group Synchronization (3):

v Shmem_barrier(...)

__

__

Barrier Barrier

OpenSHMEM API
Point-to-Point Synchronization (1)

11 Point-to-Point synchronization
Wait
Wait Until

® Equal, Not equal, Greater than, Less than or equal to, Less than,
Greater than or equal to

For C: TYPE = double, float, int, long, longdouble, longlong, short
For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Point-to-Point Synchronization (2)

long *dest;

PE 0 dest = (long *) shmalloc(sizeof(*dest));
*dest = 9L;
shmem_barrier_all();

|f .(.me ==1){
shmem_long_
}

PE 1

A

if (me == 0){
src=101;
shmem_long_put(dest, &src, 1, 1);

}

shmem_Dbarrier_all();

Code snippet showing operation of shmem_wait

OpenSHMEM API
Point-to-Point Synchronization (3)

1 Fence (data transfer sync.)
Ensures ordering of outgoing write (put) operations to a single PE

void shmem_fence()

- Quiet (data transfer sync.)

Woaits for completion of all outstanding remote writes initiated from the
calling PE (on some implementations fence = quiet)

void shmem_quiet()

OpenSHMEM Collective API

oy Broadcast (1)

1 One-to-all communication

O void shmem_broadcastSS(void *target, void
*source, int nelems, int PE_root, int PE_start, int
PE_stride, int PE_size, long *pSync)

0 Storage Size (SS, bits) = 32/4, 64/8

OpenSHMEM Collective API
Broadcast (2)

e Output

int *target, *source; _

target= (int *) shmalloc(sizeof(int)); targeton PEQis O

source= (int *) shmalloc(sizeof(int)); target on PE 1 is 222

*target= 0; target on PE 2 is 222

*source= 101; target on PE 3 is 222 ks the PE
active set

shmem_barrier_all();

if (me ==1){
*source =2 collective opera
e oo oty]

shmem broadcast32(target source, 1, 0, 0, 0, 4, pSync);

printf("target on PE %d is %d\n", _my_pe(), *target);

Code snippet showing operation of shmem_broadcast

OpenSHMEM Collective API

. Shared Address Space

. Private Address Space

OpenSHMEM Collective API
Broadcast (4): Root & Active Set

Example 1
PE_root = O, PE_start = O, logPE_stride = O, PE_size = 4
PE O broadcasts to PE 1, PE 2 and PE 3

Example 2
PE_root = 2, PE_start = 2, logPE_stride = O, PE_size = 4
PE 4 broadcasts to PE 2, PE 3 and PE 5

Example 3
PE_root = 1, PE_start = O, logPE_stride = 1, PE_size = 4
PE 2 broadcasts to PE O, PE 4 and PE 6

OpenSHMEM Collective API

ﬂb

Storage Size (SS, bits) = 32, 64 (default)

1 Collect

o Concatenates blocks of data from multiple PEs to an array in every PE

O void shmem_collectSS(void *target, void *source, int nelems, int PE_start, int
PE_stride, int PE_size, long *pSync)

o Storage Size (SS, bits) = 32, 64,128, mem (any size)
11 Fixed Collect

O void shmem_fcollectSS(void *target, void *source, int nelems, int PE_start, int
PE_stride, int PE_size, long *pSync)

OpenSHMEM Collective API

Shared Address Space

Private Address Space

OpenSHMEM Collective API
Reductions (1)

11 Logical
and, or, xor
0 Extrema
max, min
o1 Arithmetic
product, sum
1 TYPE = int, long, longlong, short

OpenSHMEM Collective API

——

__

——————————————————————————

Shared Address Space

Private Address Space

OpenSHMEM API

o Atomic Operations (1)

0 Swap
2 Unconditional
m long shmem_swap(long *target, long value, int pe)
B TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)
w TYPE = double, float, int, long, longlong, short
1 Conditional
B TYPE shmem_TYPE_cswap(TYPE *target, int cond, TYPE value, int pe)
@ TYPE = int, long, longlong, short

01 Arithmetic
O TYPE shmem_TYPE_OP(TYPE *target, TYPE value, int pe)
m OP = fadd, finc
w TYPE = int, long, longlong, short

OpenSHMEM API
Atomic Operations (2)

long *dest;

dest = (long *) shmalloc(sizeof(*dest));

*dest= me;

shmem_barrier_all(); Output

PE 1: dest =1, swapped =0
new_val = me;

if (me==1){ -
swapped_val = shmem_long_swap(dest, new_val, 0);
printf(“PE %d: dest = %d, swapped = %d\n", me, *target, swapped_val);
}

shmem_barrier_all();

OpenSHMEM API
Accessibility

shmem_pe_accessible

Determines whether a processing element (PE) is accessible via
SHMEM data transfer operations

shmem_ addr accessible

Determines whether an address is accessible via SHMEM
data transfers operations from the specified remote
processing element (PE)

OpenSHMEM API

Mutual Exclusion: Locks
Set lock

first-come, first-served manner

Clear lock

ensuring that all local and remote stores initiated in the
critical region are complete before releasing the lock

Test lock
avoid blocking

function returns without waiting

OpenSHMEM AP

ami2ddress Manipulation and Cache
1 Address manipulation

o shmem_pfir - Returns a pointer to a data object on a remote PE

1 Cache control

O shmem_ clear cac JIche coherency mode

O shmem_set cay nables aut soherency mode

O shmem_set ¢ - cache coherency

coherent

O shmem_udcfl oherent a ¢

n Sequential to Parallel using OpenSHMEM

Parallelization using OpenSHMEM
Step 1

Preparation

Code Analysis
To determine what the code does and how it does it

Should fit SPMD style of programming
Dependency Analysis

Data dependencies
True dependency, input dependency

Control dependencies

To determine the sections of code that can run in parallel and
those that must be executed sequentially.

Parallelization using OpenSHMEM
Step 2

Decide what variables need to be symmetric

®only variables that need to be communicated

Add shmem API calls for communication and
computation

Add shmem synchronization
® To insure updates

u Separate different stages

Parallelization using OpenSHMEM

cpExample

chronize

nchronize

Parallelization using OpenSHMEM
Example:SSCA3

Image Processing and Data |/O Application
benchmark developed for High Productivity
Computing Systems (HPCS).

SSCA3 benchmark has essentially two stages;

front-end
back-end

Parallelization using OpenSHMEM

o Example:3SCAS, Our observations

SYNTACTIC HIGH
COMPLEXITY

CONCEPTUAL LOW MEDIUM
COMPLEXITY

MAXIMUM SPEED- R-¥¥4 8.94

UP

Parallelization using OpenSHMEM

Example:SSCA3
T e ——

Execution Times

350

300

» \
e 250

8

b3

.£ 200
[
,g R
c 150
Q2
::: A
% 100 \
(1Y)

0]

1 2 3 4 5 6 7 8

n PORTING APPLICATIONS: MPI 1.0 TO SHMEM

MPI 1.0 to OpenSHMEM

Incremental Porting

Step 1: Replace initialization calls

Step 2: Replace MPI send-receive pair by a single
put/get with appropriate synchronization

Step 3: Replace MPI collective calls with SHMEM
collective calls

Step 4: For calls that do not have corresponding
OpenSHMEM calls

MPI 1.0 to OpenSHMEM

Incremental Porting: Stage1 (2)

Example: Stage 1 (Initialization) w
#include <mpp/shmem.h> D

int main(int argc, char *argv[]{

MPAAniE&@sgc, &argv);
MPIMQb i iAE ranKUNMPRP TOMM_WORLD, &my_rank);

MIFPL'({S rrr‘#niﬁ?g(‘lﬁ$9_;COMM_WORLD, &comm_size);

MPI_Finalize();

MPI 1.0 to OpenSHMEM

Incremental Porting: Unmatched calls

MPI_Alltoall(send_count, 1, MPI_INT, recv_count, 1,
MPI_INT, MPI_COMM_WORLD);

for(i=0; i<npes; i++){

shmem_int_put(&recv_count, &send_count, 1, i);

MPI 1.0 to OpenSHMEM
Incremental Porting: Matrix Multiplication

MPI Code OpenSHMEM Code

Distribute blocks of COLUMNS to each process Distribute blocks to COLUMNS to each process
np = size; // number of processes np = size; // number of processes
blocksize = COLUMNS /np; // block size blocksize = COLUMNS /np; // block size
B_matrix_displacement = rank * blocksize ; B_matrix_displacement = rank * blocksize ;
Allocate local arrays Allocate SHMEM arrays

a_local = (double **)malloc(ROW S*sizeof(do
b_local = (double **)malloc(ROW S*sizeof(
c_local = (double **)malloc(ROW S*sizeof(

shmem_barrier_all();
local = (double **)shmalloc(ROW S*sizeof(double *));
ocal = (double **)shmalloc(ROW S*sizeof(double *));

T al = (double **)shmalloc(ROW S*sizeof(double *));
Initialize local arrays

for(i=0; i<ROWS; i++) {

a_local[i] = (double *)malloc(blocksize*sizeof(double)); Initialize arrays

for(i=0; i<ROWS; i++) {

} a_local[i] = (double
*)shmalloc(blocksize*sizeof(double));

MPI 1.0 to OpenSHMEM

Incremental Porting: Matrix Multiplication

MPI Code OpenSHMEM Code
Send the Local block of matrix a to process on right Send the Local block of matrix 'a’ to process on right

if(rank == np-1)
MPI_lIsend (&a_localli][0],blocksize, MPI_DOUBLE,

if(rank == np-1)
shmem_double_put(&a_localli][0],&a_localli]

0,

1,MPI_COMM_WORLD,&req[0]); [0],blocksize,0);
else else

MPI_Isend (&a_localli] shmem_double_put(&a_localli][0],&a_localli]
[0],blocksize,MPI_DOUBLE,rank+1, 1,blocksize,rank+1);

1,MPI_COMM_WORLD,&req[1]); shmem_barrier_all();

if(rank == 0
() mpute the local displacement (REMAINS SAME AS MPI)
MPI_Recv(&a_localli]
[0],blocksize,MPI_DOUBLE,np-1,

1,MPI_COMM_WORLD,&status);

else

MPI_Recv(&a_localli]
[0],blocksize,MPI_DOUBLE,rank-1,

1,MPI_COMM_WORLD,&status);

Compute the local displacement

MPI 1.0 to OpenSHMEM

_ Direct Replacement (1)

MPI_Init(&argc, &argv)

start_pes(0)

&comm_size)

MPI_Comm_rank(MPI_COMM_WORLD, _my_pe()
&my_rank)
MPI_Comm_size(MPI_COMM_WORLD, _num_pes()

MPI_Barrier(comm)

shmem_barrier_all()

MPI_Allreduce(bucket_size,
bucket_size_totals, SIZE, MPI_INT,
MPI_SUM, MPI_COMM_WORLD)

shmem_int_sum_to_all(bucket_size_totals,buc
ket_size,SIZE,
0,0,comm_size,ipWrk,pSync)

MPI_Bcast(It, 1, MPI_INTEGER, 0,
MPI_COMM_WORLD)

shmem_broadcast4(lt, It, 1, O, O, O, nprocs,
pSync)

MPI 1.0 to OpenSHMEM

_.Direct Replacement (2)

MPI_Send(send_buff,
buff_len,MPI_DOUBLE,to_rank....)

shmem_double_put(recv_buff,send_buff,buff_
len, to_rank)

MPI_Recv(recv_buff, buff_len,dp_type,
from_rank....)

shmem_double_get(recv_buff,send_buff,buff_
len, from_rank)

MPI_Wait(request,status)

shmem_wait(variable, value)

MPI_reduce(t, tmax, 1,MPI_REAL,
MPI_MAX,root, mpi_comm_world)

shmem_int_max_to_all(tmax,t,
1,0,0,nprocs,pwrk,psync)

MPI_Scatter(src,count, MPI_INT,dst,count,

shmem_broadcast(dst, src, count, O, O, O, size,

MPI_INT, O, comm_world) pSync)
MPI_Gather(src,count, MPI_INT,dst,count, shmem_collect32(dst, src, count, O, O, O, size,
MPI_INT, O, comm_world) pSync)

MPI 1.0 to OpenSHMEM
Equivalent OpenSHMEM calls

MPL_AlltoAll for(j1=0;j1 <comm_size;j1++){
shmem_int_put(&recv_count[my_rank],

&send_count[j1],1,i1);
}

MPI_AlltoAllv for(j1=0;j1 <comm_size;j1++){

int k1 = send_displ[j1];

static int k2;

shmem_int_get(&k2,&recv_displ[my_rank]
il);

shmem_int_put(key_buff2+k2,key_buff1+k

} 1,send_count[j1],i1);

MPI_Comm and MPI_Group calls NA
MPI_Finalize NA

OpenSHMEM vs. MPI 2.0

OpenSHMEM vs. MPI 2.0

Symmetric memory allocation

Collective Call
MPI_Win_create(var1, window1)
MPI_Win_create(var2, window2)

Process 0 Process1

Symmetric Data
Global variables
Static local or global variables
shmalloc() memory
Process 0 Process 1

shmem_get(&var1) shmem_put(&var2)

MPI Window semantics

* All processes which intend to
use the window must
participate in window creation

* Many or all the local
allocations/objects should be
coalesced within a single
window creation.

SHMEM semantics

* All global and static data are
by default accessible to all
process.

* Local allocations/objects can
be made remotely accessible
using shmalloc instead of
malloc

Process 0 (Source)
MPI_Fence

MPI_Fence

Process 0 (Source)
shmem_fence()
shmem_put()
shmem_fence()

shmem_put()

OpenSHMEM vs. MPI 2.0

Synchronization (1)

Process 1 (Dest)
MPI_Fence

MPI_Fence

Process 1 (Dest)
shmem_fence()
shmem_put()
shmem_fence()

shmem_put()

MPI_Win_fence
* Fence is a collective call.

* Need 2 fence calls, one
to separate and another
one to complete.

 So it mostly functions like
barrier

shmem_fence

» shmem fence is just meant
for ordering of puts.

* It does not separate the

processes nor does it mean
completion

* Ensures there are no
pending puts to be delivered
to the same target before the
next put

Process 0 (Source)

MPI_Start
MPI_Put
MPI_Put

MPI_Complete

Process 0 (Source)
shmem_put(data)
shmem_put(flag1)
shmem_wait(flag2)

OpenSHMEM vs. MPI 2.0

Synchronization (2)

Process 1 (Dest)
MPI_Post

Cannot do anything

MPI_Wait

Process 1 (Dest)
shmem_wait(flag1)
shmem_put()
shmem_fence()

shmem_put(flag2)

* Point to point
synchronization.

» Sender does Start and waits
for Post from receiver

* The receiver does Post and
waits for the data.

* The sender Puts the data
and signals completion to
receiver

» The receiver can directly wait
for the data using
shmem_wait on a event flag.

» The sender puts the data
and sets the event flag to
signal the receiver.

» Both post and complete are
implicit inside the wait and put
operation.

Process 0 (Source)
If(rank == 0) {
MPI1_Win_lock
MPI1_Put
MPI_Win_unlock

}

Process 0 (Source)

shmem_set_lock

shmem_clear_lock()

OpenSHMEM vs. MPI 2.0

Synchronization (3)

Process 1 (Dest)
If(rank == 0) {
MPI1_Win_lock
MPI1_Put
MPI_Win_unlock

}

Process 1 (Dest)

shmem_set_lock

shmem_put(data)

shmem_clear_lock()

 No mutual exclusion

* Lock is not real lock, but
begin RMA

* Unlock means end RMA

* Only the source calls
lock

* Enforces mutual
exclusion

» The PE which acquires
lock does put

* The waiting PE gets the
lock on first come first
served basis

OpenSHMEM vs. MPI 2.0
Difficulties using MP1 2.0

Window creation is a collective operation

May restrict the use of passive-target RMA operations

to only work on memory allocated using
MPI_Alloc._ mem

It is erroneous to have concurrent conflicting RMA get/
put (or local load /store)

Multiple windows are allowed to include overlapping
memory regions, however it is erroneous to use
concurrent operations to distinct overlapping windows

OpenSHMEM and Hardware

OpenSHMEM is intended to be a specification that
Standardizes current efforts

Doesn’t restrict implementors

Want to allow freedom for innovation on hardware
E.g. collectives/atomics on NICs

Emerging manycore architectures

MIC, Bluegene/Q
Embedded systems with DMA engines

Heterogeneous architectures

E.g. Convey, “ceepee-geepee”

References

Hongzhang Shan and Jaswinder Pal Singh, A Comparison of MPI, SHMEM and Cache-coherent Shared
Address Space Programming Models on the SGI Origin2000

SHMEM tutorial by Hung-Hsun Su, HCS Research Laboratory,University of Florida

Evaluating Error Detection Capabilities of UPC Compilers and Runtime Error detection by lowa Sate
University

Quadrics SHMEM Programming Manual

Glenn Luecke et. al., The Performance and Scalability of SHMEM and MPI-2 One-Sided Routines on a SGI
Origin 2000 and a Cray T3E-600

Patrick H. Worley, CCSM Component Performance Benchmarking and Status of the CRAY X1 at ORNL

Karl Feind, Shared Memory Access (SHMEM) Routines

Galen M. Shipman and Stephen W. Poole, Open-SHMEM: Towards a Unified RMA Model

Thanks!

Questions?

