
OpenSHMEM TUTORIAL

Presenters: Swaroop Pophale and Tony Curtis
University of Houston, Texas

This work was supported by the United States
Department of Defense & used resources of the
Extreme Scale Systems Center at Oak Ridge
National Laboratory.

Acknowledgement

2

Outline
3

  About us
  Background
  History and Implementations
  The OpenSHMEM Effort
  OpenSHMEM API
  Porting
  A look ahead…
  References

OpenSHMEM Tutorial
Introductory Material

Tony Curtis Swaroop Pophale Dr. Barbara Chapman

Ricardo Mauricio Ram Nanjegowda

4

OpenSHMEM Tutorial
Introductory Material

  http://www.cs.uh.edu/~hpctools/
  Research in a number of areas

 Focused on large scale parallelism
 Exascale

  ~ 20 MS & PhD students
  3 senior staff and assistant professor

5

OpenSHMEM Tutorial
Introductory Material

  So what is it our group researches?

  OpenMP
 Extreme scale
 Distributed systems
 Locality

6

OpenSHMEM Tutorial
Introductory Material

  Compiler technology
 OpenUH (based on Open64)

7

OpenSHMEM Tutorial
Introductory Material

  Heterogeneous Computing
 Power-aware
 OpenMP
 MCA
 Accelerators

8

OpenSHMEM Tutorial
Introductory Material

  PGAS Languages and Libraries

 UPC

 CAF

 Both supported in OpenUH

9

OpenSHMEM Tutorial
Introductory Material

  PGAS Languages and Libraries

 SHMEM

 Chapel

10

WE WILL TAKE IT SEQUENTIALLY..

NEW TO PARALLEL COMPUTING? 11

12

  Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.

Background
What is Parallel Computing?

main{
Initialize...
.
Compute..
.
.
return 0;
}

Sequential Program

13

  Parallel computing is the simultaneous use of multiple
compute resources to solve a computational problem.

Background
What is Parallel Computing?

main{
Initialize...
.
Compute..
.
.
return 0;
}

Parallel Program

Concurrent ≠ Parallel

14

  Single Program Multiple Data (SPMD)
  All processes are doing the same thing with different data items

  Multiple Program Multiple Data (MPMD)
  All process are executing different programs and using different data

items

Background
Different types Parallel Programming

Background
What is a Programming Model?

15

  A view of data and execution
  Where architecture and applications meet
  Can be viewed as a “contract”

  Everyone knows the rules

  Better understanding of performance considerations

  Benefits
  Application - independence from architecture
  Architecture - independence from applications

16

  Data Parallel Model
 HPF

  Communication Centric Model
 MPI

  Shared Memory Model
 OpenMP

  Distributed-Shared Memory Model or the
Partitioned Global Address Space Model
 UPC, CAF, SHMEM

Background
Programming Models

17

Logical Layout of PGAS Programming Model

Background
PGAS Programming Model

18

  Unified Parallel C
  Language defines a "physical" association between

shared data items and UPC threads called ”affinity”.
  All scalar data has affinity with thread 0.

  Arrays may have cyclic (per element), blocked-cyclic (user-defined) or
blocked (run-time) affinity.

  All thread interaction is explicitly managed by the
programmer through language primitives: locks,
barriers, memory fences.

  Work sharing using “forall”

Background
UPC

19

  The number of images is fixed and each image has its
own index, retrievable at run-time.

  Each image executes the same program
independently of the others.

  The programmer inserts explicit synchronization and
branching as needed.

  An “object” has the same name in each image.
  Each image works on its own local data.
  An image moves remote data to local data through,

and only through, explicit CAF syntax.

Background
CAF

NEW TO SHMEM? 20

  Symmetric Hierarchical MEMory library
  For Single Program Multiple Data style of programming
  Available for C , C++, and Fortran

  Used for programs that
  perform computations in separate address spaces and
  explicitly communicate data to and from different processes in the

program.

  The processes participating in SHMEM applications are
referred to as processing elements (PEs).

  SHMEM routines supply remote one-sided data
transfer, broadcast, reduction, synchronization, and
atomic memory operations.

21

Introduction
What is SHMEM?

22

  Cray SHMEM
  SHMEM first introduced by Cray Research Inc. in 1993 for Cray T3D
  Platforms: Cray T3D, T3E, PVP, XT series

  SGI SHMEM
  SGI incorporated Cray SHMEM in their Message Passing Toolkit (MPT)
  Owns the “rights” for SHMEM

  Quadrics SHMEM (company out of business)
  Optimized API for QsNet
  Platform: Linux cluster with QsNet interconnect

  Others
  GSHMEM, University of Florida
  HP SHMEM, IBM SHMEM (used internally only)
  GPSHMEM (cluster with ARMCI & MPI support, dead)

Note: SHMEM was not defined by any one standard.

Introduction
History of SHMEM

  Initialization
  Include header shmem.h

  E.g. #include <shmem.h> , #include <mpp/shmem.h>
  start_pes, shmem_init: Initializes the library
  my_pe: Get the PE ID of local processor (0 to N-1)
  num_pes: Get the total number of PEs in the program

SGI Quadrics Cray

Fortran C/C++ C/C++ Fortran C/C++

start_pes(0) start_pes(0) shmem_init start_pes start_pes

shmem_init shmem_init

NUM_PES _num_pes num_pes NUM_PES

MY_PE _my_pe my_pe

The Problem:
Differences in SHMEM Implementations (1)

23

#include <stdio.h>

#include <mpp/shmem.h>

int main(void)

{

 int me, npes;

 start_pes(0);

 npes = _num_pes();

 me = _my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

#include <stdio.h>

#include <shmem.h>

int main(void)

{

 int me, npes;

 shmem_init();

 npes = num_pes();

 me = my_pe();

 printf("Hello from %d of %d\n", me, npes);

 return 0;

}

Hello World (SGI on Altix) Hello World (SiCortex)

The Problem:
Differences in SHMEM Implementations (2)

24

Hello World on SGI on Altix Hello World on SiCortex

The Problem:
Differences in SHMEM Implementations (2)

25

26

The Solution:

27

  An effort to create a standardized SHMEM library
API and defining expected behavior

  Aims at bringing together hardware vendors and
SHMEM library developers

  Discuss and extend standard with important new
capabilities

SGI’s SHMEM API is the baseline for OpenSHMEM
Specification 1.0

What is OpenSHMEM?

28

  Community web site (under construction)
  Wiki
  Documentation

  OpenSHMEM 1.0 Specification

  FAQ
  Cheat sheet

  Training material and tutorials
  Mailing list

 https://email.ornl.gov/mailman/listinfo/openshmem

OpenSHMEM
Outreach

29

  PGAS’10
 Workshop and paper

  SC’10 New Orleans
  Booth presence (PGAS, Oak Ridge National Laboratory, Gulf Coast

Academic Supercomputing)
  BOF Session
  GCAS booth presentation

  ICS 2011
 Poster Presentation

OpenSHMEM
Participation

30

  PGAS’11
 Workshop

  SC’11
 Poster
 BOF

OpenSHMEM
Participation

  RDMA lets one PE access certain variables of another PE
without interrupting the other PE

  SHMEM can take advantage of hardware RDMA

  SHMEM’s data transfer uses symmetric variables

31

Key Concept
Remote Direct Memory Access

  Symmetric Variables
  Scalars or arrays that exist with the same size, type, and relative address

on all PEs.

  There are two types of Symmetric Variables
  Globals
  Dynamically allocated and maintained by the SHMEM library

  The following kinds of data objects are symmetric:
  Fortran data objects

  in common blocks
  or with the SAVE attribute.

  Non-stack C and C++ variables.
  Fortran arrays allocated with shpalloc
  C and C++ data allocated by shmalloc

32

Key Concept
Symmetric Variables

Compile time Run time allocation
on symmetric heap

33

Dynamic allocation of Symmetric Data

int main (void)
{
 int *x;
 …
 start_pes(0);
 …
 x = (int*) shmalloc(sizeof(x));
 …
 …
 shmem_barrier_all();
 …
 shfree(x);
 return 0;
}

x x

x x

Same
off-set

PE 0 PE 1

PE 2 PE 3

Key Concept
Symmetric Variables

34

  Data transfers
  One sided puts and gets

  Synchronization

  Barrier, Fence, quiet

  Collective communication

  Broadcast, Collection, Reduction

  Address Manipulation and Data Cache control
  Not supported by all SHMEM implementations (Deprecated in OpenSHMEM 1.0)

  Atomic Memory Operations
  Provide mechanisms to implement mutual exclusion
  Swap, Add, Increment, fetch

  Distributed Locks
  Set, free and query

  Accessibility Query Routines
  PE accessible, Data accessible

OpenSHMEM
Routines

35

 Put
 Single value

  double, float, int, long, short, longlong, longdouble, char
 Contiguous object

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical
 Strided

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Data Transfer (1)

36

..
long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
static long target[10];

start_pes(0);
if (_my_pe() == 0) {
 /* put 10 words into target on PE 1 */
 shmem_long_put(target, source, 10, 1);
}
shmem_barrier_all(); /* sync sender and receiver */

if (_my_pe() == 1) {
 for(i=0;i<10;i++)
 printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
}
…

Code snippet showing a put from PE 0 to PE 1

OpenSHMEM API
Data Transfer (2): Put

PE 0 PE 1

Shared Address Space

Private Address Space

target

source

Excuse me while I overwrite your
copy of source

?

Output

target[0] on PE 1 is 1
target[1] on PE 1 is 2
target[2] on PE 1 is 3
target[3] on PE 1 is 4
…
target[9] on PE 1 is 10

OpenSHMEM API
Data Transfer (3): Put

37

38

 Get
 Single value

  double, float, int, long, short, longlong, longdouble, char
 Contiguous object

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical
 Strided

 For C: TYPE = double, float, int, long, longdouble, longlong,
short, 32, 64, 128, mem

 For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Data Transfer (4)

39

..
static long source[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
long target[10];

start_pes(0);
if (_my_pe() == 1) {
 /* get 10 words into target from PE 0 */
 shmem_long_get(target, source, 10, 0);
}

if (_my_pe() == 1) {
 for(i=0;i<10;i++)
 printf("target[0] on PE %d is %d\n", _my_pe(), target[0]);
}
…

Code snippet showing PE 1 get data from PE 0

OpenSHMEM API
Data Transfer (4): Get

PE 0 PE 1

Shared Address Space

Private Address Space

source

target

Excuse me while I get a copy of
source

source

Output

target[0] on PE 1 is 1
target[1] on PE 1 is 2
target[2] on PE 1 is 3
target[3] on PE 1 is 4
…
target[9] on PE 1 is 10

OpenSHMEM API
Data Transfer (5): Get

40

  Barrier

  pSync is a symmetric work array that enables overlapping collective
communication

  void shmem_barrier_all()
  All PEs wait until every PE calls this function

  void shmem_barrier(int PE_start, int PE_stride, int PE_size, long
*pSync)
  Barrier operation on subset of PEs

41

NEW CONCEPT
“ACTIVE SET”

Subset of PEs defined by Start_PE, logPE_stride and

PE_sizes

OpenSHMEM Collective API
Group Synchronization

42

  Quick look at Active Sets
 Example 1

 PE_start = 0, logPE_stride = 0, PE_size = 4
ACTIVE SET?

 Example 2
 PE_start = 0, logPE_stride = 1, PE_size = 4
ACTIVE SET?

 Example 3
 PE_start = 2, logPE_stride = 2, PE_size = 3
ACTIVE SET?

PE 0, PE 1, PE 2, PE 3

PE 0, PE 2, PE 4, PE 6

PE 2, PE 6, PE 10

OpenSHMEM Collective’s Concept
Active Sets

43

shmem_barrier_all() synchronizes all executing PEs

Ensures completion of all
•  local memory stores
•  remote memory updates

Group Synchronization (1):
shmem_barrier_all()

PE 0

PE 3

PE 1

PE 2

Barrier Barrier

Group Synchronization (2):
shmem_barrier_all()

44

PE 0

PE 3

PE 1

PE 2

Barrier Barrier

Group Synchronization (3):
shmem_barrier(…)

45

46

  Point-to-Point synchronization
  Wait
  Wait Until

  Equal, Not equal, Greater than, Less than or equal to, Less than,
Greater than or equal to

  For C: TYPE = double, float, int, long, longdouble, longlong, short
  For Fortran: TYPE=complex, integer, real, character, logical

OpenSHMEM API
Point-to-Point Synchronization (1)

47

OpenSHMEM API
Point-to-Point Synchronization (2)

…
…
long *dest;
dest = (long *) shmalloc(sizeof(*dest));
*dest = 9L;
shmem_barrier_all();
….
if (me == 1) {
 shmem_long_wait(dest, 9L);
}
…
if (me == 0) {
 src=101;
 shmem_long_put(dest, &src, 1, 1);
}
shmem_barrier_all();
…

PE 0 PE 1

PE 1 waits

Code snippet showing operation of shmem_wait

  Fence (data transfer sync.)
  Ensures ordering of outgoing write (put) operations to a single PE
  void shmem_fence()

  Quiet (data transfer sync.)
  Waits for completion of all outstanding remote writes initiated from the

calling PE (on some implementations fence = quiet)
  void shmem_quiet()

48

OpenSHMEM API
Point-to-Point Synchronization (3)

  One-to-all communication
 void shmem_broadcastSS(void *target, void

*source, int nelems, int PE_root, int PE_start, int
PE_stride, int PE_size, long *pSync)

 Storage Size (SS, bits) = 32/4, 64/8

49

OpenSHMEM Collective API
Broadcast (1)

50

OpenSHMEM Collective API
Broadcast (2)

…
…
int *target, *source;
target= (int *) shmalloc(sizeof(int));
source= (int *) shmalloc(sizeof(int));
*target= 0;
*source= 101;
shmem_barrier_all();
if (me == 1) {
 *source = 222;
}
shmem_broadcast32(target, source, 1, 0, 0, 0, 4, pSync);

printf("target on PE %d is %d\n", _my_pe(), *target);
…

Code snippet showing operation of shmem_broadcast

collective operation

must be symmetric number of elements Zero-based ordinal of the PE
with respect to the active set
Define the active set

Output

target on PE 0 is 0
target on PE 1 is 222
target on PE 2 is 222
target on PE 3 is 222

PE 0

Shared Address Space

Private Address Space

A

PE 1

A

PE 2

A

PE 3

A A A A

OpenSHMEM Collective API
Broadcast (3): Working

51

52

  Example 1
  PE_root = 0, PE_start = 0, logPE_stride = 0, PE_size = 4

PE 0 broadcasts to PE 1, PE 2 and PE 3

  Example 2
  PE_root = 2, PE_start = 2, logPE_stride = 0, PE_size = 4
PE 4 broadcasts to PE 2, PE 3 and PE 5

  Example 3
  PE_root = 1, PE_start = 0, logPE_stride = 1, PE_size = 4

PE 2 broadcasts to PE 0, PE 4 and PE 6

OpenSHMEM Collective API
Broadcast (4): Root & Active Set

53

  Collect
  Concatenates blocks of data from multiple PEs to an array in every PE
  void shmem_collectSS(void *target, void *source, int nelems, int PE_start, int

PE_stride, int PE_size, long *pSync)
  Storage Size (SS, bits) = 32, 64,128, mem (any size)

  Fixed Collect
  void shmem_fcollectSS(void *target, void *source, int nelems, int PE_start, int

PE_stride, int PE_size, long *pSync)

Storage Size (SS, bits) = 32, 64 (default)

OpenSHMEM Collective API
Collect (1)

PE 0

Shared Address Space

Private Address Space

AA B

PE 1

AA B

PE 2

AA B

PE 3

AA B

B B B B

OpenSHMEM Collective API
Collect (2): Working of Collect

54

55

  Logical
 and, or, xor

  Extrema
 max, min

  Arithmetic
 product, sum

  TYPE = int, long, longlong, short

OpenSHMEM Collective API
Reductions (1)

PE 0

Shared Address Space

Private Address Space

A B

PE 1 PE 2 PE 3

A B A B A B

C C C

A A

C

AA

A A

AAA

A

A A

OpenSHMEM Collective API
Reductions (2): Working

56

57

  Swap
  Unconditional

  long shmem_swap(long *target, long value, int pe)

  TYPE shmem_TYPE_swap(TYPE *target, TYPE value, int pe)

  TYPE = double, float, int, long, longlong, short
  Conditional

  TYPE shmem_TYPE_cswap(TYPE *target, int cond, TYPE value, int pe)

  TYPE = int, long, longlong, short

  Arithmetic
  TYPE shmem_TYPE_OP(TYPE *target, TYPE value, int pe)

  OP = fadd, finc

  TYPE = int, long, longlong, short

OpenSHMEM API
Atomic Operations (1)

58

…
…
long *dest;
dest = (long *) shmalloc(sizeof(*dest));
*dest= me;
shmem_barrier_all();
….
new_val = me;
if (me== 1) {
 swapped_val = shmem_long_swap(dest, new_val, 0);
 printf(“PE %d: dest = %d, swapped = %d\n", me, *target, swapped_val);
}
shmem_barrier_all();
…

OpenSHMEM API
Atomic Operations (2)

Output

PE 1: dest = 1, swapped = 0

59

  shmem_pe_accessible
  Determines whether a processing element (PE) is accessible via

SHMEM data transfer operations

  shmem_addr_accessible
 Determines whether an address is accessible via SHMEM

data transfers operations from the specified remote
processing element (PE)

OpenSHMEM API
Accessibility

60

  Set lock
  first-come, first-served manner

  Clear lock
  ensuring that all local and remote stores initiated in the

critical region are complete before releasing the lock

  Test lock
  avoid blocking
  function returns without waiting

OpenSHMEM API
Mutual Exclusion: Locks

61

  Address manipulation
  shmem_ptr - Returns a pointer to a data object on a remote PE

  Cache control
  shmem_clear_cache_inv - Disables automatic cache coherency mode

  shmem_set_cache_inv - Enables automatic cache coherency mode
  shmem_set_cache_line_inv - Enables automatic line cache coherency

mode
  shmem_udcflush - Makes the entire user data cache coherent
  shmem_udcflush_line - Makes coherent a cache line

OpenSHMEM API
Address Manipulation and Cache

Sequential to Parallel using OpenSHMEM 62

63

  Preparation
 Code Analysis

  To determine what the code does and how it does it
  Should fit SPMD style of programming

 Dependency Analysis
 Data dependencies

  True dependency, input dependency

 Control dependencies
  To determine the sections of code that can run in parallel and

those that must be executed sequentially.

Parallelization using OpenSHMEM
Step 1

64

 Decide what variables need to be symmetric
 only variables that need to be communicated

 Add shmem API calls for communication and
computation

 Add shmem synchronization
 To insure updates
 Separate different stages

Parallelization using OpenSHMEM
Step 2

65

Parallelization using OpenSHMEM
Example

Int main(void){

 }
}

Compute

Compute

Collect Results

Collect Results

for(…){
Parallel

Synchronize
collectives

Parallel

Synchronize

66

  Image Processing and Data I/O Application
benchmark developed for High Productivity
Computing Systems (HPCS).

  SSCA3 benchmark has essentially two stages;
  front-end
 back-end

Parallelization using OpenSHMEM
Example:SSCA3

67

UPC SHMEM

SYNTACTIC
COMPLEXITY

LOW HIGH

CONCEPTUAL
COMPLEXITY

LOW MEDIUM

MAXIMUM SPEED-
UP

6.27 8.94

Parallelization using OpenSHMEM
Example:SSCA3, Our observations

68

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e
in

 s
ec

on
ds

Number of threads

Execution Times

Parallelization using OpenSHMEM
Example:SSCA3

PORTING APPLICATIONS: MPI 1.0 TO SHMEM 69

  Step 1: Replace initialization calls
  Step 2: Replace MPI send-receive pair by a single

put/get with appropriate synchronization
  Step 3: Replace MPI collective calls with SHMEM

collective calls
  Step 4: For calls that do not have corresponding

OpenSHMEM calls

MPI 1.0 to OpenSHMEM
Incremental Porting

70

Example: Stage 1 (Initialization)

#include <mpp/shmem.h>

int main(int argc, char *argv[]){

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

MPI_Comm_size(MPI_COMM_WORLD, &comm_size);

….

MPI_Finalize();

MPI 1.0 to OpenSHMEM
Incremental Porting: Stage1 (2)

Include shmem.h

start_pes(0);
comm_size = _num_pes();
 my_rank = _my_pe();

71

MPI_Alltoall(send_count, 1, MPI_INT, recv_count, 1,
MPI_INT, MPI_COMM_WORLD);

for(i=0; i<npes; i++){
 shmem_int_put(&recv_count, &send_count, 1, i);
}

72

MPI 1.0 to OpenSHMEM
Incremental Porting: Unmatched calls

Replace by

73

MPI 1.0 to OpenSHMEM
Incremental Porting: Matrix Multiplication

MPI Code
Distribute blocks of COLUMNS to each process

 np = size; // number of processes

 blocksize = COLUMNS/np; // block size

 B_matrix_displacement = rank * blocksize ;

Allocate local arrays

 a_local = (double **)malloc(ROWS*sizeof(double *));

 b_local = (double **)malloc(ROWS*sizeof(double *));

 c_local = (double **)malloc(ROWS*sizeof(double *));

Initialize local arrays

 for(i=0; i<ROWS; i++) {

 a_local[i] = (double *)malloc(blocksize*sizeof(double));

..

 }

OpenSHMEM Code
Distribute blocks to COLUMNS to each process

 np = size; // number of processes

 blocksize = COLUMNS/np; // block size

 B_matrix_displacement = rank * blocksize ;

Allocate SHMEM arrays

 shmem_barrier_all();

 a_local = (double **)shmalloc(ROWS*sizeof(double *));

 b_local = (double **)shmalloc(ROWS*sizeof(double *));

 c_local = (double **)shmalloc(ROWS*sizeof(double *));

Initialize arrays

 for(i=0; i<ROWS; i++) {

 a_local[i] = (double
*)shmalloc(blocksize*sizeof(double));

…

 }

74

MPI 1.0 to OpenSHMEM
Incremental Porting: Matrix Multiplication

MPI Code
Send the Local block of matrix a to process on right

 MPI_Barrier(MPI_COMM_WORLD);

 if(rank == np-1)

 MPI_Isend (&a_local[i][0],blocksize,MPI_DOUBLE,
0,

 1,MPI_COMM_WORLD,&req[0]);

 else

 MPI_Isend (&a_local[i]
[0],blocksize,MPI_DOUBLE,rank+1,

 1,MPI_COMM_WORLD,&req[1]);

 if(rank == 0)

 MPI_Recv(&a_local[i]
[0],blocksize,MPI_DOUBLE,np-1,

 1,MPI_COMM_WORLD,&status);

 else

 MPI_Recv(&a_local[i]
[0],blocksize,MPI_DOUBLE,rank-1,

 1,MPI_COMM_WORLD,&status);

Compute the local displacement

…

OpenSHMEM Code
Send the Local block of matrix 'a' to process on right

 shmem_barrier_all();

 if(rank == np-1)

 shmem_double_put(&a_local[i][0],&a_local[i]
[0],blocksize,0);

 else

 shmem_double_put(&a_local[i][0],&a_local[i]
[0],blocksize,rank+1);

 shmem_barrier_all();

Compute the local displacement (REMAINS SAME AS MPI)

…

75

MPI 1.0 to OpenSHMEM
Direct Replacement (1)

MPI calls Possible OpenSHMEM calls

MPI_Init(&argc, &argv) start_pes(0)

MPI_Comm_rank(MPI_COMM_WORLD,
&my_rank)

_my_pe()

MPI_Comm_size(MPI_COMM_WORLD,
&comm_size)

_num_pes()

MPI_Barrier(comm) shmem_barrier_all()

MPI_Allreduce(bucket_size,
bucket_size_totals, SIZE, MPI_INT,
MPI_SUM, MPI_COMM_WORLD)

shmem_int_sum_to_all(bucket_size_totals,buc
ket_size,SIZE,

0,0,comm_size,ipWrk,pSync)

MPI_Bcast(lt, 1, MPI_INTEGER, 0,
MPI_COMM_WORLD)

shmem_broadcast4(lt, lt, 1, 0, 0, 0, nprocs,
pSync)

76

MPI 1.0 to OpenSHMEM
 Direct Replacement (2)

MPI calls Possible OpenSHMEM calls

MPI_Send(send_buff,
buff_len,MPI_DOUBLE,to_rank....)

shmem_double_put(recv_buff,send_buff,buff_
len, to_rank)

MPI_Recv(recv_buff, buff_len,dp_type,
from_rank....)

shmem_double_get(recv_buff,send_buff,buff_
len, from_rank)

MPI_Wait(request,status) shmem_wait(variable, value)

MPI_reduce(t, tmax, 1,MPI_REAL,
MPI_MAX,root, mpi_comm_world)

shmem_int_max_to_all(tmax,t,
1,0,0,nprocs,pwrk,psync)

MPI_Scatter(src,count,MPI_INT,dst,count,
MPI_INT, 0, comm_world)

shmem_broadcast(dst, src, count, 0, 0, 0, size,
pSync)

MPI_Gather(src,count,MPI_INT,dst,count,
MPI_INT, 0, comm_world)

shmem_collect32(dst, src, count, 0, 0, 0, size,
pSync)

77

MPI 1.0 to OpenSHMEM
Equivalent OpenSHMEM calls

MPI calls Possible OpenSHMEM calls

MPI_AlltoAll for(j1=0;j1<comm_size;j1++){
shmem_int_put(&recv_count[my_rank],

 &send_count[j1],1,j1);
}

MPI_AlltoAllv for(j1=0;j1<comm_size;j1++){
int k1 = send_displ[j1];
static int k2;
shmem_int_get(&k2,&recv_displ[my_rank]

 ,1,j1);
shmem_int_put(key_buff2+k2,key_buff1+k

 1,send_count[j1],j1);
}

MPI_Comm and MPI_Group calls NA

MPI_Finalize

NA

OpenSHMEM vs. MPI 2.0 78

Collective Call

MPI_Win_create(var1, window1)

MPI_Win_create(var2, window2)

Process 0 Process1

…… …..

MPI_Put(window1) MPI_Put(window2)

……. ……

MPI Window semantics

•  All processes which intend to
use the window must
participate in window creation

•  Many or all the local
allocations/objects should be
coalesced within a single
window creation.

SHMEM semantics

•  All global and static data are
by default accessible to all
process.

•  Local allocations/objects can
be made remotely accessible
using shmalloc instead of
malloc

Symmetric Data

Global variables

Static local or global variables

shmalloc() memory

Process 0 Process 1

shmem_get(&var1) shmem_put(&var2)

……. ………

OpenSHMEM vs. MPI 2.0
Symmetric memory allocation

79

Process 0 (Source)

MPI_Fence

……

If(rank==0)

 MPI_Put

…….

MPI_Fence

MPI_Win_fence

•  Fence is a collective call.

•  Need 2 fence calls, one
to separate and another
one to complete.

•  So it mostly functions like
barrier

shmem_fence

•  shmem fence is just meant
for ordering of puts.

•  It does not separate the
processes nor does it mean
completion

•  Ensures there are no
pending puts to be delivered
to the same target before the
next put

Process 0 (Source)

shmem_fence

……

shmem_put()

shmem_fence()

shmem_put()

…….

Process 1 (Dest)

MPI_Fence

……

If(rank==0)

 MPI_Put

…….

MPI_Fence

Process 0 (Source)

shmem_fence

……

shmem_put()

shmem_fence()

shmem_put()

…….

Process 0 (Source)

shmem_fence()

……

shmem_put()

shmem_fence()

shmem_put()

…….

Process 1 (Dest)

shmem_fence()

……

shmem_put()

shmem_fence()

shmem_put()

…….

OpenSHMEM vs. MPI 2.0
Synchronization (1)

80

Process 0 (Source)

MPI_Start

……

MPI_Put

MPI_Put

…….

MPI_Complete

Process 1 (Dest)

MPI_Post

….

Cannot do anything

…….

MPI_Wait

•  Point to point
synchronization.

•  Sender does Start and waits
for Post from receiver

•  The receiver does Post and
waits for the data.

•  The sender Puts the data
and signals completion to
receiver

•  The receiver can directly wait
for the data using
shmem_wait on a event flag.

•  The sender puts the data
and sets the event flag to
signal the receiver.

•  Both post and complete are
implicit inside the wait and put
operation.

Process 0 (Source)

shmem_put(data)

shmem_put(flag1)

shmem_wait(flag2)

…….

…….

Process 1 (Dest)

shmem_wait(flag1)

……

shmem_put()

shmem_fence()

shmem_put(flag2)

…….

OpenSHMEM vs. MPI 2.0
Synchronization (2)

81

Process 0 (Source)

If(rank == 0) {

MPI_Win_lock

MPI_Put

MPI_Win_unlock

}

•  No mutual exclusion

•  Lock is not real lock, but
begin RMA

•  Unlock means end RMA

•  Only the source calls
lock

Process 0 (Source)

shmem_set_lock

……..

shmem_put(data)

…….

shmem_clear_lock()

Process 1 (Dest)

shmem_set_lock

…….

shmem_put(data)

shmem_clear_lock()

Process 1 (Dest)

If(rank == 0) {

MPI_Win_lock

MPI_Put

MPI_Win_unlock

}

•  Enforces mutual
exclusion

•  The PE which acquires
lock does put

•  The waiting PE gets the
lock on first come first
served basis

OpenSHMEM vs. MPI 2.0
Synchronization (3)

82

83

  Window creation is a collective operation
  May restrict the use of passive-target RMA operations

to only work on memory allocated using
MPI_Alloc_mem

  It is erroneous to have concurrent conflicting RMA get/
put (or local load/store)

  Multiple windows are allowed to include overlapping
memory regions, however it is erroneous to use
concurrent operations to distinct overlapping windows

OpenSHMEM vs. MPI 2.0
Difficulties using MPI 2.0

84

  OpenSHMEM is intended to be a specification that
 Standardizes current efforts
 Doesn’t restrict implementors

  Want to allow freedom for innovation on hardware
  E.g. collectives/atomics on NICs
  Emerging manycore architectures

 MIC, Bluegene/Q
  Embedded systems with DMA engines

 Heterogeneous architectures
  E.g. Convey, “ceepee-geepee”

OpenSHMEM and Hardware

85

1.  Hongzhang Shan and Jaswinder Pal Singh, A Comparison of MPI, SHMEM and Cache-coherent Shared
Address Space Programming Models on the SGI Origin2000

2.  SHMEM tutorial by Hung-Hsun Su, HCS Research Laboratory,University of Florida

3.  Evaluating Error Detection Capabilities of UPC Compilers and Runtime Error detection by Iowa Sate
University http://hpcgroup.public.iastate.edu/CTED/

4.  Quadrics SHMEM Programming Manual http://www.psc.edu/~oneal/compaq/ShmemMan.pdf

5.  Glenn Luecke et. al., The Performance and Scalability of SHMEM and MPI-2 One-Sided Routines on a SGI
Origin 2000 and a Cray T3E-600 http://dsg.port.ac.uk/Journals/PEMCS/papers/paper19.pdf

6.  Patrick H. Worley, CCSM Component Performance Benchmarking and Status of the CRAY X1 at ORNL
http://www.csm.ornl.gov/~worley/talks/index.html

7.  Karl Feind, Shared Memory Access (SHMEM) Routines

8.  Galen M. Shipman and Stephen W. Poole, Open-SHMEM: Towards a Unified RMA Model

References

86

Thanks!

Questions?

