PGAS10 Workshop

Introducing OpenSHMEM

Barbara Chapman, **Tony Curtis**, University of Houston; Charles Koelbel, Jeffery Kuehn, Oak Ridge National Laboratory; Stephen Poole, Oak Ridge National Laboratory and OSSS, Inc.; Lauren Smith, OSSS, Inc. & DOD

- Structure of the Talk
 - Overview of SHMEM & PGAS
 - Features
 - A brief history
 - Defining OpenSHMEM
 - Standardization issues
 - Implementation work
 - Community building

- Introduction to SHMEM and PGAS
 - MPI became de facto standard library for distributed parallel computing
 - Message-passing, send + acknowledge
 - 1-sided communication requires less overhead
 - Shoot first, ask questions later
 - SHMEM is such a library
 - SHared MEMory

- Introduction to SHMEM and PGAS
 - SHMEM has
 - Point-to-point put & get
 - Broadcast & collect
 - Arithmetical and logical reductions
 - Atomic operations, critical sections and locks

- Introduction to SHMEM and PGAS
 - C and Fortran interfaces
 - Variables can be allocated with global visibility
 - All processors see a named variable
 - Global Address Space
 - Processors with separate same-named variables
 - Each processor sees the same name, but has a separate copy
 - Partitioned Global Address Space
 - Can underpin PGAS languages
 - Chapel, X10, Co-Array Fortran, UPC, Titanium...

2-sided communication with acknowledgement

1-sided communication without acknowledgement

- Communication in SHMEM
 - Symmetric variables
 - Accessible from remote processors (put/get)
 - Same name on all processors
 - At same *relative* address
 - But differing values
 - Fences and Barriers
 - To synchronize previous 1-sided communication

```
#include <stdio.h>
#include <mpp/shmem.h>
int
main(int argc, char **argv)
  int me, npes, right;
  start pes(0);
       = my_pe();
  me
  npes = num pes();
  right = (me + 1) % npes; /* right neighbor in ring */
  shmem int put(dest, source, 1, right);
  ... something interesting goes here ...
  shmem barrier all();
  return 0;
```

A portable shmem implementation

Same offset, but at potentially different addresses

```
if (_my_pe() == 0) {
    shmem_int_put (dest = x, src = a, len = 1, pe = 1);
}
// has "a" arrived yet? We don't know...
```

- Taking advantage of hardware for performance
 - Hardware offload frees other resources
 - Remote direct memory access
 - Processor can "put" directly to another processor's memory without interrupting
 - Atomic, collective, locking and barrier operations can also benefit
 - Can produce substantial performance gains

- Examples of SHMEM's features
 - Point-to-point put & get
 - shmem_long_put(long *dest, long *src, len, pe)
 - Broadcast & collect
 - shmem broadcast64(dest, src, n, root, start, stride, size, sync)
 - Arithmetical and logical reductions
 - shmem_long_sum_to_all(...)
 - Atomic operations, critical sections and locks
 - shmem_swap(long *dst, long *src, int pe)

- A brief history of SHMEM
 - Cray (1993)
 - T3D
 - Ordered communication
 - T3E
 - Communication became unordered, extend API to cope
 - SGI (1997)
 - 64-bit extensions
 - Quadrics (1998)
 - Included SGI extensions
 - Has non-blocking puts and gets
 - On top of QsNet
 - GPSHMEM (2000)
 - On top of ARMCI
 - Other versions include: HP, SiCortex (based on Quadrics API); IBM

- Standardization & community
 - Various versions of SHMEM diverged
 - Different APIs, usage restrictions
 - So code is not directly portable
 - Simple example:

SGI	Quadrics	SiCortex
start_pes(int npes)	start_pes(int npes)	start_pes(int npes) NO-OP
	shmem_init(void)	shmem_init(void)

Here's "Hello World" again on an SGI Altix

```
#include <stdio.h>
#include <mpp/shmem.h>
int
main(int argc, char **argv)
{
  int me, npes;

  start_pes(0);

  me = _my_pe();
   npes = _num_pes();

  printf("Hello from node %4d of %4d\n", me, npes);
  return 0;
}
```

- Standardization & community
 - We propose a process to standardize and extend SHMEM
 - To be called OpenSHMEM
 - Steve Poole founded "Open Source Software Solutions" (OSSS)
 - A home for OpenSHMEM
 - SGI transferred rights to SHMEM to OSSS
 - SGI has permanent chair
 - Form community to move forward and develop materials

- Towards OpenSHMEM
 - Take the SGI version as a starting-point
 - SGI (Altix) implementation as reference
 - With editorial rewrites
 - A.k.a. version 1.0
 - Develop new specification as version 2.0
 - Solicit new ideas from community
 - What features should be changed/added?
 - Reference implementations
 - New OpenSHMEM to be written by University of Houston
 - Baseline for future development
 - Start with 1.0 and move toward 2.0

OpenSHMEM programmer

OpenSHMEM API

Internal Comms API ::: Internal Symm. Memory API

GASNet / ARMCI / direct drivers...

Network Layer: IB, Quadrics, Myrinet, ...

University of Houston: Implementation Structure

- Validation & Verification
 - Merge existing test suites
 - Build core tests of correctness
 - And of performance
 - To compare implementations of collective algorithms
 - For tuning of underlying libraries/transports
 - To evaluate adaptive behavior
 - lowa State working with University of Houston

- OpenSHMEM outreach and participation
 - OpenSHMEM web site (under construction)
 - Community Wiki
 - Documentation: FAQ, cheatsheet, specification
 - Training material / tutorials
 - Software downloads
 - Source code of OpenSHMEM versions
 - Validation and Verification Suite
 - Sample programs
 - Conferences/workshops
 - Mailing list(s)

- OpenSHMEM outreach
 - SC10 (New Orleans, November 13-19)
 - Birds of a Feather meeting
 - OpenSHMEM: SHMEM for the PGAS community at large
 - Wednesday, November 17th, 5:30pm 7:00pm
 - Current exhibition booth presence
 - PGAS (#1233)
 - Oak Ridge National Laboratory (#3325)
 - Gulf Coast Academic Supercomputing (#2401)
 - Cray (#2829)
 - SGI (#3313)

- To get involved
 - OpenSHMEM mailing list
 - https://email.ornl.gov/mailman/listinfo/openshmem
 - OpenSHMEM web site
 - COMING SOON!
 - SC10 Birds of a Feather
 - http://sc10.supercomputing.org/schedule/event_detail.php?evid=bof159
 - Come talk with the OpenSHMEMers here
 - Lauren Smith, Chuck Koelbel, Tony Curtis