PGAS10 Workshop

Introducing OpenSHMEM

Barbara Chapman, Tony Curtis, University of Houston; Charles Koelbel, Jeffery Kuehn, Oak Ridge National Laboratory; Stephen Poole, Oak Ridge National Laboratory and OSSS, Inc.; Lauren Smith, OSSS, Inc. & DOD
Introducing OpenSHMEM

• Structure of the Talk
 – Overview of SHMEM & PGAS
 • Features
 • A brief history
 – Defining OpenSHMEM
 • Standardization issues
 • Implementation work
 • Community building
Introducing OpenSHMEM

• Introduction to SHMEM and PGAS
 – MPI became de facto standard library for distributed parallel computing
 • Message-passing, send + acknowledge
 – 1-sided communication requires less overhead
 • Shoot first, ask questions later
 • SHMEM is such a library
 • SHared MEMory
Introducing OpenSHMEM

• Introduction to SHMEM and PGAS
 – SHMEM has
 • Point-to-point put & get
 • Broadcast & collect
 • Arithmetical and logical reductions
 • Atomic operations, critical sections and locks
Introducing OpenSHMEM

• Introduction to SHMEM and PGAS
 – C and Fortran interfaces
 – Variables can be allocated with global visibility
 • All processors see a named variable
 • Global Address Space
 – Processors with separate same-named variables
 • Each processor sees the same name, but has a separate copy
 • **Partitioned** Global Address Space
 – Can underpin PGAS languages
 • Chapel, X10, Co-Array Fortran, UPC, Titanium...
Introducing OpenSHMEM

2-sided communication with acknowledgement

1-sided communication without acknowledgement
Introducing OpenSHMEM

- Communication in SHMEM
 - Symmetric variables
 - Accessible from remote processors (put/get)
 - Same name on all processors
 - At same relative address
 - But differing values
 - Fences and Barriers
 - To synchronize previous 1-sided communication
Introducing OpenSHMEM

#include <stdio.h>
#include <mpp/shmem.h>

int main(int argc, char **argv)
{
 int me, npes, right;

 start_pes(0);

 me = __my_pe();
 npes = __num_pes();

 ...

 right = (me + 1) % npes; /* right neighbor in ring */
 shmem_int_put(dest, source, 1, right);

 ... something interesting goes here ...

 shmem_barrier_all();

 return 0;
}
A portable shmem implementation

```c
x = (int *) shmalloc(sizeof(int));

if (_my_pe() == 0) {
    shmem_int_put(dest = x, src = a, len = 1, pe = 1);
}

// has "a" arrived yet? We don't know...
```

Symmetric memory

Put "a" -> x @ PE 1

Same offset, but at potentially different addresses
Introducing OpenSHMEM

• Taking advantage of hardware for performance
 – Hardware offload frees other resources
 – Remote direct memory access
 • Processor can “put” directly to another processor’s memory without interrupting
 – Atomic, collective, locking and barrier operations can also benefit
 – Can produce substantial performance gains
Introducing OpenSHMEM

• Examples of SHMEM’s features
 – Point-to-point put & get
 • `shmem_long_put(long *dest, long *src, len, pe)`
 – Broadcast & collect
 • `shmem_broadcast64(dest, src, n, root, start, stride, size, sync)`
 – Arithmetical and logical reductions
 • `shmem_long_sum_to_all(...)`
 – Atomic operations, critical sections and locks
 • `shmem_swap(long *dst, long *src, int pe)`
Introducing OpenSHMEM

• A brief history of SHMEM
 – Cray (1993)
 • T3D
 – Ordered communication
 • T3E
 – Communication became unordered, extend API to cope
 – SGI (1997)
 • 64-bit extensions
 – Quadrics (1998)
 • Included SGI extensions
 • Has non-blocking puts and gets
 • On top of QsNet
 – GPSHMEM (2000)
 • On top of ARMCI
 – Other versions include: HP, SiCortex (based on Quadrics API); IBM
Introducing OpenSHMEM

• Standardization & community
 – Various versions of SHMEM diverged
 • Different APIs, usage restrictions
 • So code is not directly portable
 • Simple example:

<table>
<thead>
<tr>
<th>SGI</th>
<th>Quadrics</th>
<th>SiCortex</th>
</tr>
</thead>
<tbody>
<tr>
<td>start_pes(int npes)</td>
<td>start_pes(int npes)</td>
<td>start_pes(int npes) NO-OP</td>
</tr>
<tr>
<td>shmem_init(void)</td>
<td>shmem_init(void)</td>
<td>shmem_init(void)</td>
</tr>
</tbody>
</table>
Introducing OpenSHMEM

• Here’s “Hello World” again on an SGI Altix

```c
#include <stdio.h>
#include <mpp/shmem.h>

int main(int argc, char **argv) {
    int me, npes;
    start_pes(0);

    me = _my_pe();
    npes = _num_pes();

    printf("Hello from node %4d of %4d\n", me, npes);

    return 0;
}
```

Not the same in all SHMEMS
Introducing OpenSHMEM

• Standardization & community
 – We propose a process to standardize and extend SHMEM
 • To be called OpenSHMEM
 – Steve Poole founded “Open Source Software Solutions” (OSSS)
 • A home for OpenSHMEM
 • SGI transferred rights to SHMEM to OSSS
 • SGI has permanent chair
 – Form community to move forward and develop materials
Introducing OpenSHMEM

• Towards OpenSHMEM
 – Take the SGI version as a starting-point
 • SGI (Altix) implementation as reference
 – With editorial rewrites
 • A.k.a. version 1.0
 – Develop new specification as version 2.0
 • Solicit new ideas from community
 • What features should be changed/added?
 – Reference implementations
 • New OpenSHMEM to be written by University of Houston
 • Baseline for future development
 • Start with 1.0 and move toward 2.0
Introducing OpenSHMEM

OpenSHMEM programmer

OpenSHMEM API

Internal Comms API \[\cdots\] Internal Symm. Memory API

GASNet / ARMCI / direct drivers...

Network Layer: IB, Quadrics, Myrinet, ...

University of Houston: Implementation Structure
Introducing OpenSHMEM

• Validation & Verification
 – Merge existing test suites
 – Build core tests of correctness
 – And of performance
 • To compare implementations of collective algorithms
 • For tuning of underlying libraries/transports
 • To evaluate adaptive behavior
 – Iowa State working with University of Houston
Introducing OpenSHMEM

• OpenSHMEM outreach and participation
 – OpenSHMEM web site (under construction)
 • Community Wiki
 • Documentation: FAQ, cheatsheet, specification
 • Training material / tutorials
 • Software downloads
 – Source code of OpenSHMEM versions
 – Validation and Verification Suite
 – Sample programs
 – Conferences/workshops
 – Mailing list(s)
Introducing OpenSHMEM

• OpenSHMEM outreach
 – SC10 (New Orleans, November 13-19)
 • Birds of a Feather meeting
 – OpenSHMEM: SHMEM for the PGAS community at large
 – Wednesday, November 17th, 5:30pm – 7:00pm
 • Current exhibition booth presence
 – PGAS (#1233)
 – Oak Ridge National Laboratory (#3325)
 – Gulf Coast Academic Supercomputing (#2401)
 – Cray (#2829)
 – SGI (#3313)
Introducing OpenSHMEM

• To get involved
 – OpenSHMEM mailing list
 • https://email.ornl.gov/mailman/listinfo/openshmem
 – OpenSHMEM web site
 • COMING SOON!
 – SC10 Birds of a Feather
 • http://sc10.supercomputing.org/schedule/event_detail.php?evid=bof159
 – Come talk with the OpenSHMEMers here
 • Lauren Smith, Chuck Koelbel, Tony Curtis